For decades, solar-cell efficiencies have remained below the thermodynamic limits. However, new approaches to light management that systematically minimize thermodynamic losses will enable ultrahigh efficiencies previously considered impossible.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Recent trends in photoelectrochemical water splitting: the role of cocatalysts
NPG Asia Materials Open Access 11 November 2022
-
Immobilized covalent triazine frameworks films as effective photocatalysts for hydrogen evolution reaction
Nature Communications Open Access 15 November 2021
-
Harvesting energy from sun, outer space, and soil
Scientific Reports Open Access 01 December 2020
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.





References
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Prog. Photovolt. Res. Appl. 20, 12–20 (2012).
Yuen, H. in Renewable Energy and the Environment SRWB3 (OSA Technical Digest, 2011).
Technology Roadmap — Solar Photovoltaic Energy (International Energy Agency, 2010); http://www.iea.org/papers/2010/pv_roadmap.pdf
Shockley, W. & Queisser, H. J. J. Appl. Phys. 32, 510–519 (1961).
Green, M. A. Third-generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006).
Martí, A. & Luque, A. Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization (Institute of Physics, 2003).
Landsberg, P. T. & Tonge, G. J. Appl. Phys. 51, R1–R20 (1980).
Ruppel, W. & Würfel, P. IEEE Trans. Electron. Dev. 27, 877–882 (1980).
Würfel, P. Physica E 14, 18–26 (2002).
Campbell, P. & Green, M. A. IEEE Trans. Elec. Dev. 33, 234–239 (1986).
Araújo, G. L. & Martí, A. Solar Energy Mater. Solar Cells 33, 213–240 (1994).
Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. IEEE Trans. Electron. Dev. 31, 711–716 (1984).
Yablonovitch, E. J. Opt. Soc. Am. 72, 899–907 (1982).
Yu, Z. F., Raman, A. & Fan, S. H. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).
Callahan, D. M., Munday, J. N. & Atwater, H. A. Nano Lett. 12, 214 (2011).
Luque, A. Solar Energy Mater. Solar Cells 23, 152–163 (1991).
Atwater, H. A. & Polman, A. Nature Mater. 9, 205–213 (2010).
Atwater, J. H. et al. Appl. Phys. Lett. 99, 151113 (2011).
Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Nature Photon. 2, 161–164 (2008).
Coenen, T., Vesseur, E. J. R. & Polman, A. ACS Nano http://dx.doi.org/10.1021/nn204750d (2012).
Spinelli, P., Verschuuren, M. A. & Polman, A. Nature Commun. http://dx.doi.org/10.1038/ncomms1691 (in the press).
Ferry, V. E. et al. Nano Lett. 11, 4239–4245 (2011).
Imenes, A. G. & Mills, D. R. Solar Energy Mater. Solar Cells 84, 19–69 (2004).
Barnett, A. et al. Prog. Photovolt. Res. Appl. 17, 75–83 (2009).
Green, M. A. & Ho-Baille, A. Prog. Photovolt. Res. Appl. 18, 42–47 (2010).
Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T. & Harbison, J. P. Appl. Phys. Lett. 56, 2419–2421 (1990).
Yoon, J. et al. Nature 465, 329–333 (2010).
Acknowledgements
The authors acknowledge helpful discussions with Eli Yablonovitch, John Rogers, Paul Braun, Nathan S. Lewis, Ralph Nuzzo and Enrique Canovas. The Caltech portion of this work was supported by DOE Office of Basic Energy Sciences 'Light–Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293. Work at AMOLF is part of the research programme of FOM which is financially supported by NWO; it is also supported by the European Research Council. This work is also part of the Global Climate and Energy Project (GCEP).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Polman, A., Atwater, H. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater 11, 174–177 (2012). https://doi.org/10.1038/nmat3263
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3263
This article is cited by
-
The first 2D organic-inorganic hybrid relaxor-ferroelectric single crystal
Science China Chemistry (2023)
-
Recent trends in photoelectrochemical water splitting: the role of cocatalysts
NPG Asia Materials (2022)
-
Immobilized covalent triazine frameworks films as effective photocatalysts for hydrogen evolution reaction
Nature Communications (2021)
-
Optimization of power conversion efficiency in multi-band solar cells (theoretical investigation using GA optimization)
Optical and Quantum Electronics (2021)
-
Improved photovoltaic performance of solar cells co-sensitized with graphitic C3N4 and CdS quantum dots
Journal of Materials Science: Materials in Electronics (2021)