Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Photonic design principles for ultrahigh-efficiency photovoltaics

For decades, solar-cell efficiencies have remained below the thermodynamic limits. However, new approaches to light management that systematically minimize thermodynamic losses will enable ultrahigh efficiencies previously considered impossible.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solar-cell characteristics.
Figure 2: Light-management architectures for reaching ultrahigh efficiency.
Figure 3: Multi-junction solar cells.
Figure 4: Scalable inexpensive large-area layer transfer and nanofabrication techniques.
Figure 5: Thermodynamic losses in solar-energy conversion.

References

  1. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Prog. Photovolt. Res. Appl. 20, 12–20 (2012).

    Article  Google Scholar 

  2. Yuen, H. in Renewable Energy and the Environment SRWB3 (OSA Technical Digest, 2011).

    Google Scholar 

  3. Technology Roadmap — Solar Photovoltaic Energy (International Energy Agency, 2010); http://www.iea.org/papers/2010/pv_roadmap.pdf

  4. Shockley, W. & Queisser, H. J. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  5. Green, M. A. Third-generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006).

    Google Scholar 

  6. Martí, A. & Luque, A. Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization (Institute of Physics, 2003).

    Book  Google Scholar 

  7. Landsberg, P. T. & Tonge, G. J. Appl. Phys. 51, R1–R20 (1980).

    Article  CAS  Google Scholar 

  8. Ruppel, W. & Würfel, P. IEEE Trans. Electron. Dev. 27, 877–882 (1980).

    Article  Google Scholar 

  9. Würfel, P. Physica E 14, 18–26 (2002).

    Article  Google Scholar 

  10. Campbell, P. & Green, M. A. IEEE Trans. Elec. Dev. 33, 234–239 (1986).

    Article  Google Scholar 

  11. Araújo, G. L. & Martí, A. Solar Energy Mater. Solar Cells 33, 213–240 (1994).

    Article  Google Scholar 

  12. Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. IEEE Trans. Electron. Dev. 31, 711–716 (1984).

    Article  Google Scholar 

  13. Yablonovitch, E. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  Google Scholar 

  14. Yu, Z. F., Raman, A. & Fan, S. H. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  CAS  Google Scholar 

  15. Callahan, D. M., Munday, J. N. & Atwater, H. A. Nano Lett. 12, 214 (2011).

    Article  Google Scholar 

  16. Luque, A. Solar Energy Mater. Solar Cells 23, 152–163 (1991).

    Article  CAS  Google Scholar 

  17. Atwater, H. A. & Polman, A. Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  18. Atwater, J. H. et al. Appl. Phys. Lett. 99, 151113 (2011).

    Article  Google Scholar 

  19. Laux, E., Genet, C., Skauli, T. & Ebbesen, T. W. Nature Photon. 2, 161–164 (2008).

    Article  CAS  Google Scholar 

  20. Coenen, T., Vesseur, E. J. R. & Polman, A. ACS Nano http://dx.doi.org/10.1021/nn204750d (2012).

  21. Spinelli, P., Verschuuren, M. A. & Polman, A. Nature Commun. http://dx.doi.org/10.1038/ncomms1691 (in the press).

  22. Ferry, V. E. et al. Nano Lett. 11, 4239–4245 (2011).

    Article  CAS  Google Scholar 

  23. Imenes, A. G. & Mills, D. R. Solar Energy Mater. Solar Cells 84, 19–69 (2004).

    Article  CAS  Google Scholar 

  24. Barnett, A. et al. Prog. Photovolt. Res. Appl. 17, 75–83 (2009).

    Article  CAS  Google Scholar 

  25. Green, M. A. & Ho-Baille, A. Prog. Photovolt. Res. Appl. 18, 42–47 (2010).

    Article  CAS  Google Scholar 

  26. Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T. & Harbison, J. P. Appl. Phys. Lett. 56, 2419–2421 (1990).

    Article  CAS  Google Scholar 

  27. Yoon, J. et al. Nature 465, 329–333 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with Eli Yablonovitch, John Rogers, Paul Braun, Nathan S. Lewis, Ralph Nuzzo and Enrique Canovas. The Caltech portion of this work was supported by DOE Office of Basic Energy Sciences 'Light–Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293. Work at AMOLF is part of the research programme of FOM which is financially supported by NWO; it is also supported by the European Research Council. This work is also part of the Global Climate and Energy Project (GCEP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Albert Polman or Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polman, A., Atwater, H. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater 11, 174–177 (2012). https://doi.org/10.1038/nmat3263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3263

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing