Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible electrical switching of spin polarization in multiferroic tunnel junctions


Spin-polarized transport in ferromagnetic tunnel junctions, characterized by tunnel magnetoresistance1, has already been proven to have great potential for application in the field of spintronics2 and in magnetic random access memories3. Until recently, in such a junction the insulating barrier played only a passive role, namely to facilitate electron tunnelling between the ferromagnetic electrodes. However, new possibilities emerged when ferroelectric materials were used for the insulating barrier, as these possess a permanent dielectric polarization switchable between two stable states4,5,6,7,8,9. Adding to the two different magnetization alignments of the electrode, four non-volatile states are therefore possible in such multiferroic tunnel junctions10,11. Here, we show that owing to the coupling between magnetization and ferroelectric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization of the barrier. Selecting the spin direction of the tunnelling electrons by short electric pulses in the nanosecond range rather than by an applied magnetic field enables new possibilities for spin control in spintronic devices12.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and basic properties of the multiferroic tunnel junctions.
Figure 2: Tunnel electro- and magnetoresistance properties of Co/PZT(3.2 nm)/LSMO junctions.
Figure 3: Model of the influence of the ferroelectric polarization on the spin polarization.


  1. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  3. Slaughter, J. M. Materials for magnetoresistive random access memory. Annu. Rev. Mater. Res. 39, 277–296 (2009).

    Article  CAS  Google Scholar 

  4. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  CAS  Google Scholar 

  5. Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007).

    Article  CAS  Google Scholar 

  6. Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  7. Hambe, M. et al. Crossing an interface: Ferroelectric control of tunnel currents in magnetic complex oxide heterostructures. Adv. Funct. Mater. 20, 2436–2441 (2010).

    Article  CAS  Google Scholar 

  8. Yin, Y. W. et al. Coexistence of tunneling magnetoresistance and electroresistance at room temperature in La0.7Sr0.3MnO3/(Ba,Sr)TiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions. J. Appl. Phys. 109, 07D915 (2011).

    Article  Google Scholar 

  9. Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nature Mater. 10, 753–758 (2011).

    Article  CAS  Google Scholar 

  10. Scott, J. F. Data storage: Multiferroic memories. Nature Mater. 6, 256–257 (2007).

    Article  CAS  Google Scholar 

  11. Velev, J. P. et al. Magnetic tunnel junctions with ferroelectric barriers: Prediction of four resistance states from first principles. Nano Lett. 9, 427–432 (2009).

    Article  CAS  Google Scholar 

  12. Ramesh, R. Ferroelectrics: A new spin on spintronics. Nature Mater. 9, 380–381 (2010).

    Article  CAS  Google Scholar 

  13. Park, J-H. et al. Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998).

    Article  CAS  Google Scholar 

  14. De Teresa, J. M. et al. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).

    Article  Google Scholar 

  15. Bowen, M. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl. Phys. Lett. 82, 233–235 (2003).

    Article  CAS  Google Scholar 

  16. Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Room temperature ferroelectric resistive switching in ultra-thin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5, 6032–6038 (2011).

    Article  CAS  Google Scholar 

  17. Zhuravlev, M. Y., Jaswal, S. S., Tsymbal, E. Y. & Sabirianov, R. F. Ferroelectric switch for spin injection. Appl. Phys. Lett. 87, 222114 (2005).

    Article  Google Scholar 

  18. Fechner, M., Ostanin, S. & Mertig, I. Effect of oxidation of the ultrathin Fe electrode material on the strength of magnetoelectric coupling in composite multiferroics. Phys. Rev. B 80, 094405 (2009).

    Article  Google Scholar 

  19. Zhuravlev, M. Y., Maekawa, S. & Tsymbal, E. Y. Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions. Phys. Rev. B 81, 104419 (2010).

    Article  Google Scholar 

  20. Burton, J. D. & Tsymbal, E. Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).

    Article  Google Scholar 

  21. Van de Veerdonk, R. J. M., Nowak, J., Meservey, R., Moodera, J. S. & de Jonge, W. J. M. Current distribution effects in magnetoresistive tunnel junctions. Appl. Phys. Lett. 71, 2839–2841 (1997).

    Article  Google Scholar 

  22. Åkerman, J. J., Slaughter, J. M., Dave, R. W. & Schuller, I. K. Tunneling criteria for magnetic-insulator-magnetic structures. Appl. Phys. Lett. 79, 3104–3106 (2001).

    Article  Google Scholar 

  23. Vera Marún, I. J., Postma, F. M., Lodder, J. C. & Jansen, R. Tunneling magnetoresistance with positive and negative sign in La0.67Sr0.33MnO3/SrTiO3/Co junctions. Phys. Rev. B 76, 064426 (2007).

    Article  Google Scholar 

  24. Brinkman, W. F., Dynes, R. C. & Rowell, J. M. Tunneling conductance of asymmetrical barriers. J. Appl. Phys. 41, 1915–1921 (1970).

    Article  CAS  Google Scholar 

  25. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  26. Kay, H. F. & Dunn, J. W. Thickness dependence of the nucleation field of triglycine sulphate. Phil. Mag. 7, 2027–2034 (1962).

    Article  CAS  Google Scholar 

  27. Kalinin, S., Jesse, S., Tselev, A., Baddorf, A. P. & Balke, N. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 5, 5683–5691 (2011).

    Article  CAS  Google Scholar 

  28. Kobayashi, K-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998).

    Article  CAS  Google Scholar 

  29. Velev, J. P., Jaswal, S. S. & Tsymbal, E. Y. Multi-ferroic and magnetoelectric materials and interfaces. Phil. Trans. R. Soc. A 369, 3069–3097 (2011).

    Article  CAS  Google Scholar 

  30. Fechner, M. et al. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys. Rev. B 78, 212406 (2008).

    Article  Google Scholar 

  31. Oleinik, I. I., Tsymbal, E. Y. & Pettifor, D. G. Atomic and electronic structure of Co/SrTiO3/Co magnetic tunnel junctions. Phys. Rev. B 65, 020401 (2001).

    Article  Google Scholar 

  32. Bocher, L. et al. Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions. Nano Lett. 12, 376–378 (2012).

    Article  CAS  Google Scholar 

  33. Zhang, S. Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys. Rev. Lett. 83, 640–643 (1999).

    Article  CAS  Google Scholar 

  34. Tsymbal, E. Y., Sokolov, A., Sabirianov, I. F. & Doudin, B. Resonant inversion of tunneling magnetoresistance. Phys. Rev. Lett. 90, 186602 (2003).

    Article  CAS  Google Scholar 

  35. Bowen, M. et al. Bias-crafted magnetic tunnel junctions with bistable spin-dependent states. Appl. Phys. Lett. 89, 103517 (2006).

    Article  Google Scholar 

Download references


This work has been supported by the German Science Foundation (DFG) through SFB 762. We are grateful to N. Schammelt for technical assistance and G. Schmidt for useful discussions. We thank P. Werner for help with HRTEM.

Author information

Authors and Affiliations



D.P. and M.A. designed the experiments; D.P. carried out the experiments; S.G. and D.P. prepared the samples; S.G. carried out the TEM investigations; D.P. and M.A. analysed and discussed the results; D.P., M.A. and D.H. prepared the manuscript.

Corresponding author

Correspondence to M. Alexe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 656 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pantel, D., Goetze, S., Hesse, D. et al. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nature Mater 11, 289–293 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing