Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anisotropic conductance at improper ferroelectric domain walls


Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena, such as insulator–metal transitions, magnetism, magnetoresistance and superconductivity1,2,3,4,5,6,7,8,9. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high-quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO3 is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO3 and related hexagonal manganites10. As the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bias-dependent domain and domain wall conductance.
Figure 2: Anisotropic electrical conductance of ferroelectric domain walls.
Figure 3: Angular dependence of the local domain wall conductance.
Figure 4: Electronic structure of charged and uncharged ferroelectric domain walls.


  1. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J-M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Mater. Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  2. Dagotto, E. When oxides meet face to face. Science 318, 1076–1077 (2007).

    Article  CAS  Google Scholar 

  3. Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010).

    Article  CAS  Google Scholar 

  4. Yamada, H. et al. Engineered interface of magnetic oxides. Science 395, 646–648 (2004).

    Article  Google Scholar 

  5. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    Article  CAS  Google Scholar 

  6. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  7. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

    Article  CAS  Google Scholar 

  8. Mathur, N. D. et al. Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature 387, 266–268 (1997).

    Article  CAS  Google Scholar 

  9. Gozar, A. et al. High-temperature interface superconductance between metallic and insulating copper oxides. Nature 455, 782–785 (2008).

    Article  CAS  Google Scholar 

  10. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 . Nature Mater. 9, 253–258 (2010).

    Article  CAS  Google Scholar 

  11. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: Trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010).

    Article  CAS  Google Scholar 

  12. Gopalan, V., Dierolf, V. & Scrymgeour, D. A. Defect–domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449–489 (2007).

    Article  CAS  Google Scholar 

  13. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  14. Farokhipoor, S. & Noheda, B Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    Article  CAS  Google Scholar 

  15. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  16. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Article  Google Scholar 

  17. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).

    Article  CAS  Google Scholar 

  18. Jungk, T., Hoffmann, Á, Soergel, E. & Fiebig, M. Electrostatic topology of ferroelectric domains in YMnO3 . Appl. Phys. Lett. 97, 012904 (2010).

    Article  Google Scholar 

  19. Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. Usp. 25, 475–493 (1982).

    Article  Google Scholar 

  20. Wu, W. et al. Polarization-modulated rectification at ferroelectric surfaces. Phys. Rev. Lett. 104, 217601 (2010).

    Article  Google Scholar 

  21. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  22. Padilla, J. & Vanderbilt, D. First-principle investigation of 180° domain walls in BaTiO3 . Phys. Rev. B 53, R5969–R5973 (1996).

    Article  CAS  Google Scholar 

  23. Jia, C-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008).

    Article  CAS  Google Scholar 

  24. Conti, S., Müller, S., Poliakovsky, A. & Salje, E. K. H. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials. J. Phys. Condens. Matter 23, 142203 (2011).

    Article  Google Scholar 

  25. Schottky, W. Halbleitertheorie der Sperrschicht. Naturwissenschaften 26, 843 (1938).

    Article  CAS  Google Scholar 

  26. Subba Rao, G. V., Wanklyn, B. M. & Rao, C. N. R. Electrical transport in rare earth ortho-chromites, -manganites and -ferrites. J. Phys. Chem. Solids 32, 345–358 (1971).

    Article  Google Scholar 

  27. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Article  Google Scholar 

  28. Mokrý, P., Tagantsev, A. K. & Fousek, J. Pressure on charged domain walls and additional imprint mechanism in ferroelectrics. Phys. Rev. B 75, 094110 (2007).

    Article  Google Scholar 

  29. Salje, E. K. H. & Zhang, H. L. Domain boundary engineering. Phase Trans. 82, 452–469 (2009).

    Article  CAS  Google Scholar 

Download references


The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No DE-AC02-05CH1123. The authors acknowledge the following support: by the Alexander von Humboldt Foundation (D.M., J.S.), by the Japan Society for the Promotion of Science Postdoctoral Fellowships for Research Abroad (Y.K.), by the ETH Zürich (N.A.S., M.F.), and by the SFB608 of the Deutsche Forschungsgemeinschaft (M.F.). D.M. is also supported by the National Science Foundation Science and Technology Center (E3S).

Author information

Authors and Affiliations



D.M. and J.S. initiated this work and conducted the experiments. A.C. and M.M. worked on the phenomenological analysis. K.D., Y.K., and N.A.S. performed the band structure calculations. R.R. and M.F. supervised the research project, and all authors discussed the results.

Corresponding authors

Correspondence to D. Meier or J. Seidel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 744 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meier, D., Seidel, J., Cano, A. et al. Anisotropic conductance at improper ferroelectric domain walls. Nature Mater 11, 284–288 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing