Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrastable nanostructured polymer glasses

Abstract

Owing to the kinetic nature of the glass transition, the ability to significantly alter the properties of amorphous solids by the typical routes to the vitreous state is restricted. For instance, an order of magnitude change in the cooling rate merely modifies the value of the glass transition temperature (Tg) by a few degrees. Here we show that matrix-assisted pulsed laser evaporation (MAPLE) can be used to form ultrastable and nanostructured glassy polymer films which, relative to the standard poly(methyl methacrylate) glass formed on cooling at standard rates, are 40% less dense, have a 40 K higher Tg, and exhibit a two orders of magnitude enhancement in kinetic stability at high temperatures. The unique set of properties of MAPLE-deposited glasses may make them attractive in technologies where weight and stability are central design issues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effect of processing method on the glass transition temperature of PMMA.
Figure 2: Structure and elasticity of MAPLE-deposited PMMA films.
Figure 3: Dependence of thermal and kinetic stability of MAPLE-deposited PMMA on substrate temperature.
Figure 4: Morphology of MAPLE-deposited PMMA films.

References

  1. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  2. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  3. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  CAS  Google Scholar 

  4. McKenna, G. B. Glass Formation and Glassy Behavior (Pergamon, 1989).

    Book  Google Scholar 

  5. Badrinarayanan, P., Zheng, W., Li, Q. & Simon, S. L. The glass transition temperature versus the fictive temperature. J. Non-Cryst. Solids 353, 2603–2612 (2007).

    Article  CAS  Google Scholar 

  6. Swallen, S. F. et al. Organic glasses with expectional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article  CAS  Google Scholar 

  7. Kearns, K. L., Still, T., Fytas, G. & Ediger, M. D. High-modulus organic glasses prepared by physical vapor deposition. Adv. Mater. 22, 39–42 (2010).

    Article  CAS  Google Scholar 

  8. Kearns, K. L., Swallen, S. F., Ediger, M. D., Wu, T. & Yu, L. Influence of substrate temperature on the stability of glasses prepared by vapor deposition. J. Chem. Phys. 127, 154702 (2007).

    Article  Google Scholar 

  9. Kearns, K. L., Swallen, S. F., Ediger, M. D., Wu, T. & Yu, L. Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition. J. Phys. Chem. B 112, 4934–4942 (2008).

    Article  CAS  Google Scholar 

  10. Swallen, S. F., Traynor, K., McMahon, R. J., Ediger, M. D. & Mates, T. E. Stable glass transformation to supercooled liquid via surface-initiated growth front. Phys. Rev. Lett. 102, 065503 (2009).

    Article  Google Scholar 

  11. Leon-Gutierrez, E., Garcia, G., Lopeandia, A. F., Clavaguera-Mora, M. T. & Rodriquez-Viejo, J. Size effects and extraordinary stability of ultrathin vapor deposited glassy films of toluene. J. Phys. Chem. Lett. 1, 341–345 (2010).

    Article  CAS  Google Scholar 

  12. Ishii, K., Nakayama, H., Hirabayashi, S. & Moriyama, R. Anomalously high-density glass of ehtylbenzene prepared by vapour deposition at temperatures close to the glass-transition temperature. Chem. Phys. Lett. 459, 109–112 (2008).

    Article  CAS  Google Scholar 

  13. Pique, A. et al. Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 355, 536–541 (1999).

    Article  Google Scholar 

  14. Chrisey, D. B. et al. Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553–576 (2003).

    Article  CAS  Google Scholar 

  15. Angell, C. A. & Wang, L-M. Hyperquenching and cold equilibration strategies for the study of liquid–liquid and protein folding transitions. Biophys. Chem. 105, 621–637 (2003).

    Article  CAS  Google Scholar 

  16. Johari, G. P. Calorimetric features of high enthalpy amorphous solids and glass softening temperature of water. J. Phys. Chem. B 107, 9063–9070 (2003).

    Article  CAS  Google Scholar 

  17. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  CAS  Google Scholar 

  18. Cheng, W. et al. Elastic properties and glass transition of supported polymer thin films. Macromolecules 40, 7283–7290 (2007).

    Article  CAS  Google Scholar 

  19. Dawson, K. J., Kearns, K. L., Yu, L., Steffen, W. & Ediger, M. D. Physical vapor deposition as a route to hidden amorphous states. Proc. Natl Acad. Sci. USA 106, 15165–15170 (2009).

    Article  CAS  Google Scholar 

  20. Fakhraai, Z. & Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).

    Article  CAS  Google Scholar 

  21. Ellison, C. J. & Torkelson, J. M. The distribution of glass transition temperatures in nanoscopically confined glass formers. Nature Mater. 2, 695–700 (2003).

    Article  CAS  Google Scholar 

  22. Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

    Article  CAS  Google Scholar 

  23. Peter, S., Meyer, H. & Baschnagel, J. Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface. J. Polym. Sci. B 44, 2951–2967 (2006).

    Article  CAS  Google Scholar 

  24. Torres, J. A., Nealey, P. F. & de Pablo, J. J. Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85, 3221–3224 (2000).

    Article  CAS  Google Scholar 

  25. Shi, Z., Debenedetti, P. G. & Stillinger, F. H. Properties of model atomic free-standing thin films. J. Chem. Phys. 134, 114524 (2011).

    Article  Google Scholar 

  26. Singh, S. & de Pablo, J. J. A molecular view of vapor deposited glasses. J. Chem. Phys. 134, 194903 (2011).

    Article  Google Scholar 

  27. Sellinger, A., Leveugle, E., Fitz-Gerald, J. M. & Zhigilei, L. V. Generation of surface features in films deposited by matrix assisted pulsed laser evaporation: The effects of the stress confinement and droplet landing velocity. Appl. Phys. A 92, 821–829 (2008).

    Article  CAS  Google Scholar 

  28. Sima, F. et al. Levan nanostructured thin films by MAPLE assembling. Biomacromolecules 12, 2251–2256 (2011).

    Article  CAS  Google Scholar 

  29. Leveugle, E. & Zhigilei, L. V. Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102, 074914 (2007).

    Article  Google Scholar 

  30. Zhigilei, L. V., Volkov, A. N., Leveugle, E. & Tabetah, M. The effect of the target structure and composition on the ejection and transport of polymer molecules and carbon nanotubes in matrix-assisted pulsed laser evaporation. Appl. Phys. A 105, 529–546 (2011).

    Article  CAS  Google Scholar 

  31. De Gennes, P. G. Kinetics of collapse for a flexible coil. J. Phys. Lett. 46, 639–642 (1985).

    Article  Google Scholar 

  32. Aseyev, V., Tenhu, H. & Winnik, F. M. Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. Adv. Polym. Sci. 196, 1–85 (2006).

    Article  CAS  Google Scholar 

  33. McKenna, G. B. Glassy states: Concentration glasses and temperature glasses compared. J. Non-Cryst. Solids 353, 3820–3828 (2007).

    Article  CAS  Google Scholar 

  34. Zheng, Y., Priestley, R. D. & McKenna, G. B. Physical aging of an epoxy subsequent to relative humidity jumps through the glass concentration. J. Polym. Sci. B 42, 2107–2121 (2004).

    Article  CAS  Google Scholar 

  35. Mi, Y., Xue, G. & Lu, X. A new perspective of the glass transition of polymer single-chain nanoglobules. Macromolecules 36, 7560–7566 (2003).

    Article  CAS  Google Scholar 

  36. Mi, Y., Xue, G. & Wang, X. Glass transition of nano-sized single chain globules. Polymer 43, 6701–6705 (2002).

    Article  CAS  Google Scholar 

  37. Greiner, R. & Schwarzl, F. R. Thermal contraction and volume relaxation of amorphous polymers. Rheol. Acta 23, 378–395 (1984).

    Article  CAS  Google Scholar 

  38. Hodge, I. A. Physical aging in polymer glasses. Science 267, 1945–1947 (1995).

    Article  CAS  Google Scholar 

  39. Hutchinson, J. M. Physical aging of polymers. Prog. Polym. Sci. 20, 703–760 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support of the National Science Foundation (NSF) Materials Research Science and Engineering Center program through the Princeton Center for Complex Materials (DMR-0819860) and usage of the PRISM Imaging and Analysis Center at Princeton University. R.D.P. acknowledges partial support from the NSF through a CAREER Award (DMR-1053144). We thank R. A. Register and P. G. Debenedetti for their comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. designed and set up the MAPLE system, performed experiments on MAPLE, DSC, GPC, NMR, WAXS, XRR, refractive index, temperature-dependent AFM, discussed and analysed the results and wrote the manuscript. A.M. designed the MAPLE system, and carried out laser calibration and trouble-shooting. D.S. performed BLS and SEM measurements. J.W.C. performed NMR and WAXS measurements and discussed the results. C.Z. performed MAPLE experiments. M.W. performed FTIR and AFM measurements. N.Y. assisted in WAXS and XRR characterization and provided equipment for temperature control on AFM. G.F. coordinated the BLS study, discussed results and commented on the manuscript. C.B.A. coordinated the set up of the MAPLE system, discussed the results and commented on the manuscript. R.D.P. conceived the idea, coordinated the project, discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Rodney D. Priestley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 678 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, Y., Morozov, A., Schneider, D. et al. Ultrastable nanostructured polymer glasses. Nature Mater 11, 337–343 (2012). https://doi.org/10.1038/nmat3234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing