Whither the oxide interface

Interfaces formed by transition-metal oxide materials offer a tremendous opportunity for fundamental as well as applied research. Yet, as exciting as these opportunities are, several challenges remain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Examples of control parameters available at oxide interfaces.
Figure 2: Designing oxide interfaces.
Figure 3: Schematic of a 'Mott transistor' with oxide channel material (white) and top gate and substrate (blue), showing the electronic density of states (DOS) calculated from single-site dynamical mean field theory.

References

  1. 1

    Mannhart, J., Blank, D. H. A., Hwang, H. Y., Millis, A. J. & Triscone, J. M. Mater. Res. Soc. Bull. 33, 1027–1034 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Hwang, H. Y. et al. Nature Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Lichtenstein, A. I. & Katsnelson, M. I. Phys. Rev. B 57, 6884–6895 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Kotliar, G. et al. Rev. Mod. Phys. 78, 865–952 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Held, K. et al. Phys. Status Solidi 243, 2599–2631 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Schollwöck, U. Rev. Mod. Phys. 77, 259–315 (2005).

    Article  Google Scholar 

  7. 7

    Tokura, Y. & Nagaosa, N. Science 288, 462–468 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Franceschetti, A. & Zunger, A. Nature 402, 60–63 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Trimarchi, G. et al. Phys. Rev. B 84, 165116 (2011).

    Article  Google Scholar 

  10. 10

    Rondinelli, J. M. & Spaldin, N. A. Adv. Mater. 23, 3363–3381 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Yang, K-Y. et al. Phys. Rev. B 84, 201104 (2011).

    Article  Google Scholar 

  12. 12

    Rüegg, A. & Fiete, G. A. Phys. Rev. B 84, 201103 (2011).

    Article  Google Scholar 

  13. 13

    Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Preprint at http://arXiv.org/abs/1106.4296 (2011).

  14. 14

    Gray, B., Lee, H. N., Liu, J., Chakhalian, J. & Freeland, J. W. Appl. Phys. Lett. 97, 013105 (2010).

    Article  Google Scholar 

  15. 15

    Ležaić, M. & Spaldin, N. A. Phys. Rev. B 83, 024410 (2011).

    Article  Google Scholar 

  16. 16

    Kaul, A. R., Gorbenko, O. Y. & Kamenev, A. A. Russ. Chem. Rev. 73, 861–880 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Chakhalian, J. et al. Phys. Rev. Lett. 107, 116805 (2011).

    CAS  Article  Google Scholar 

  18. 18

    May, S. et al. Phys. Rev. B 82, 014110 (2010).

    Article  Google Scholar 

  19. 19

    Gardner, G. P. et al. Angew. Chem. Int. Ed. (in the press).

  20. 20

    Burton, J. D. & Tsymbal, E. Y. Phys. Rev. Lett. 107, 166601 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Inoue, I. H. & Rozenberg, M. J. Adv. Funct. Mater. 18, 2289–2292 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Yang, Z., Ko, C. & Ramanathan, S. Ann. Rev. Mater. Res. 41, 337–367 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Goodenough, J. B. & Cushing, B. L. Handbook of Fuel Cells – Fundamentals, Technology and Applications Vol. 2 Ch. 35, 520–533 (Wiley, 2003).

    Google Scholar 

  24. 24

    Adler, S. B. Chem. Rev. 104, 4791–4843 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Nórskov, J. K. et al. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  26. 26

    Hammer, B. & Norskov, J. K. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  27. 27

    Suntivich, J. et al. Nature Chem. 3, 546–550 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. Science, 334, 1383–1385 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Lee, Y-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Energ. Environ. Sci. 4, 3966–3970 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Chaloupka, J. & Khaliullin, G. Phys. Rev. Lett. 100, 016404 (2008).

    Article  Google Scholar 

  31. 31

    Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H.Y. Nature 419, 378–380 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Chakhalian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chakhalian, J., Millis, A. & Rondinelli, J. Whither the oxide interface. Nature Mater 11, 92–94 (2012). https://doi.org/10.1038/nmat3225

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing