Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exchange bias in LaNiO3–LaMnO3 superlattices


The wide spectrum of exotic properties exhibited by transition-metal oxides stems from the complex competition between several quantum interactions1,2. The capacity to select the emergence of specific phases at will is nowadays extensively recognized as key for the design of diverse new devices with tailored functionalities3. In this context, interface engineering in complex oxide heterostructures has developed into a flourishing field4, enabling not only further tuning of the exceptional properties of these materials, but also giving access to hidden phases and emergent physical phenomena5,6,7,8,9,10,11. Here we demonstrate how interfacial interactions can induce a complex magnetic structure in a non-magnetic material. We specifically show that exchange bias12 can unexpectedly emerge in heterostructures consisting of paramagnetic LaNiO3 (LNO) and ferromagnetic LaMnO3 (LMO). The observation of exchange bias in (111)-oriented LNO–LMO superlattices, manifested as a shift of the magnetization–field loop, not only implies the development of interface-induced magnetism in the paramagnetic LNO layers, but also provides us with a very subtle tool for probing the interfacial coupling between the LNO and LMO layers. First-principles calculations indicate that this interfacial interaction may give rise to an unusual spin order, resembling a spin-density wave, within the LNO layers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view and structural characterization of the LNO–LMO heterostructures.
Figure 2: Magnetic loops and temperature dependence of exchange bias field.
Figure 3: Results of the first-principles calculations.


  1. Whither oxide electronics? Mater. Res. Soc. Bull. 11 (Special issue) 1006–1128 (2008).

  2. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  CAS  Google Scholar 

  3. Bibes, M., Villegas, J. E. & Barthelemy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5–84 (2011).

    Article  CAS  Google Scholar 

  4. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J-M. Interface physics in complex oxide heterostructures. Annu. Rev. Conden. Matter Phys. 2, 141–165 (2011).

    Article  CAS  Google Scholar 

  5. Mannhart, J. & Schlom, D. G. Oxide interfaces: An opportunity for electronics. Science 327, 1607–1611 (2010).

    Article  CAS  Google Scholar 

  6. Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).

    Article  CAS  Google Scholar 

  7. Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    Article  CAS  Google Scholar 

  8. Ueda, K., Tabata, H. & Kawai, T. Ferromagnetism in LaFeO3–LaCrO3 superlattices. Science 280, 1064–1066 (1998).

    Article  CAS  Google Scholar 

  9. Koida, T. et al. Effect of A-site cation ordering on the magnetoelectric properties in [(LaMnO3)m/(SrMnO3)m]n artificial superlattices. Phys. Rev. B 66, 144418 (2002).

    Article  Google Scholar 

  10. Takahashi, K. S., Kawasaki, M. & Tokura, Y. Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3 . Appl. Phys. Lett. 79, 1324–1326 (2001).

    Article  CAS  Google Scholar 

  11. Nikolaev, K. R. et al. Oscillatory exchange coupling and positive magnetoresistance in epitaxial oxide heterostructures. Phys. Rev. Lett. 85, 3728–3731 (2000).

    Article  CAS  Google Scholar 

  12. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  13. Niebieskikwiat, D. & Salamon, M. B. Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite. Phys. Rev. B 72, 174422 (2005).

    Article  Google Scholar 

  14. Ke, X., Rzchowski, M. S., Belenky, L. J. & Eom, C. B. Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3/SrRuO3 bilayers. Appl. Phys. Lett. 84, 5458–5460 (2004).

    Article  CAS  Google Scholar 

  15. Rajeev, K. P., Shivashankar, G. V. & Raychaudhuri, A. K. Low-temperature electronic-properties of a normal conducting perovskite oxide (LaNiO3). Solid State Commun. 79, 591–595 (1991).

    Article  CAS  Google Scholar 

  16. Wollan, E. O. & Koehler, W. C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1−x)La,xCa]MnO3 . Phys. Rev. 100, 545–563 (1955).

    Article  CAS  Google Scholar 

  17. Gupta, A. et al. Growth and giant magnetoresistance properties of La-deficient LaxMnO3−δ (0.67≤x≤1) films. Appl. Phys. Lett. 67, 3494–3496 (1995).

    Article  CAS  Google Scholar 

  18. Dong, S. et al. Magnetism, conductivity, and orbital order in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. B 78, 201102 (2008).

    Article  Google Scholar 

  19. Goodenough, J. B. Magnetism and the Chemical Bond (Interscience, 1963).

    Google Scholar 

  20. Rogado, N. S., Li, J., Sleight, A. W. & Subramanian, M. A. Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6 . Adv. Mater. 17, 2225–2227 (2005).

    Article  CAS  Google Scholar 

  21. Tanaka, H., Okawa, N. & Kawai, T. Magnetic exchange interactions in perovskite LaMnO3/LaMO3 (M=Ni,Co,Cr,Fe) superlattices. Solid State Commun. 110, 191–196 (1999).

    CAS  Google Scholar 

  22. Garcia-Muñoz, J. L., Rodriguez-Carvajal, J. & Lacorre, P. Neutron-diffraction study of the magnetic-ordering in the insulating regime of the perovskites RNiO3 (R=Pr and Nd). Phys. Rev. B 50, 978–992 (1994).

    Article  Google Scholar 

  23. Medarde, M. et al. Charge disproportionation in RNiO3 perovskites (R=rare earth) from high-resolution X-ray absorption spectroscopy. Phys. Rev. B 80, 245105 (2009).

    Article  Google Scholar 

  24. Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

    Article  Google Scholar 

  25. Scherwitzl, R. et al. Metal–insulator transition in ultrathin LaNiO3 films. Phys. Rev. Lett. 106, 246403 (2011).

    Article  CAS  Google Scholar 

  26. Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nature Mater. 10, 189–193 (2011).

    Article  CAS  Google Scholar 

  27. Liu, J. et al. Quantum confinement of Mott electrons in ultrathin LaNiO3/LaAlO3 superlattices. Phys. Rev. B 83, 161102 (2011).

    Article  Google Scholar 

  28. Ali, M. et al. Exchange bias using a spin glass. Nature Mater. 6, 70–75 (2007).

    Article  CAS  Google Scholar 

  29. Das, H., Waghmare, U. V., Saha-Dasgupta, T. & Sarma, D. D. Electronic structure, phonons, and dielectric anomaly in ferromagnetic insulating double pervoskite La2NiMnO6 . Phys. Rev. Lett. 100, 186402 (2008).

    Article  Google Scholar 

  30. Lee, S., Chen, R. & Balents, L. Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106, 016405 (2011).

    Article  Google Scholar 

Download references


We thank S. Gariglio, C. Lichtensteiger, B. Ziegler and M. Lopes. We also thank M. Gabay and M. Bibes for helpful discussions. This work was supported by the Swiss National Science Foundation through the National Centre of Competence in Research ‘Materials with Novel Electronic Properties’ MaNEP and Division II, by MICINN-Spain (Grants No. MAT2010-18113 and No. CSD2007-00041), and by the European Union through the project OxIDes. We used the supercomputing facilities provided by RES and CESGA.

Author information

Authors and Affiliations



P.Z. and J-M.T. conceived the project. M.G. fabricated the superlattices and carried out the magnetic measurements together with R.S. The first-principles calculations were carried out by J.Í. All authors contributed to the analysis and interpretation of the experimental results and the writing of the manuscript.

Corresponding author

Correspondence to Marta Gibert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1522 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gibert, M., Zubko, P., Scherwitzl, R. et al. Exchange bias in LaNiO3–LaMnO3 superlattices. Nature Mater 11, 195–198 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing