Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6

Article metrics


How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure1,2,3, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram—a precondition for a unified theoretical description.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characteristics of the heavy-fermion compound Ce3Pd20Si6.
Figure 2: Magnetotransport across the quantum critical point of Ce3Pd20Si6.
Figure 3: Characteristics of the Fermi-surface collapse in Ce3Pd20Si6.
Figure 4: Materials-based global phase diagram for heavy-fermion compounds near antiferromagnetic instabilities.


  1. 1

    Friedemann, S. et al. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2 . Nature Phys. 5, 465–469 (2009).

  2. 2

    Tokiwa, Y., Gegenwart, P., Geibel, C. & Steglich, F. Separation of energy scales in undoped YbRh2Si2 under hydrostatic pressure. J. Phys. Soc. Jpn 78, 123708 (2009).

  3. 3

    Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2 . Phys. Rev. Lett. 104, 186402 (2010).

  4. 4

    Schofield, A. J. Quantum criticality and novel phases: Summary and outlook. Phys. Status Solidi B 247, 563–569 (2010).

  5. 5

    Broun, D. M. What lies beneath the dome? Nature Phys. 4, 170–172 (2008).

  6. 6

    v Löhneysen, H. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

  7. 7

    Mathur, N. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

  8. 8

    Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

  9. 9

    Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006).

  10. 10

    Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Physica B 378–380, 23–27 (2006).

  11. 11

    Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

  12. 12

    Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. 107, 14547–14551 (2010).

  13. 13

    Aronson, M. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5−xPdx (x=1,1.5). Phys. Rev. Lett. 75, 725–728 (1995).

  14. 14

    Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

  15. 15

    Gribanov, A. V., Seropegin, Y. D. & Bodak, O. I. Crystal structure of the compounds Ce3Pd20Ge6 and Ce3Pd20Si6 . J. Alloy. Compd. 204, L9–L11 (1994).

  16. 16

    Deen, P. P. et al. Quantum fluctuations and the magnetic ground state of Ce3Pd20Si6 . Phys. Rev. B 81, 064427 (2010).

  17. 17

    Strydom, A. M., Pikul, A., Steglich, F. & Paschen, S. Possible field-induced quantum criticality in Ce3Pd20Si6 . J. Phys. Conf. Ser. 51, 239–242 (2006).

  18. 18

    Goto, T. et al. Quadrupole ordering in clathrate compound Ce3Pd20Si6 . J. Phys. Soc. Jpn 78, 024716 (2009).

  19. 19

    Mitamura, H. et al. Low temperature magnetic properties of Ce3Pd20Si6 . J. Phys. Soc. Jpn 79, 074712 (2010).

  20. 20

    Dönni, A. et al. Low-temperature antiferromagnetic moments at the 4a site in Ce3Pd20Ge6 . J. Phys. Condens. Matter 12, 9441–9451 (2000).

  21. 21

    Paschen, S. et al. First neutron measurements on Ce3Pd20Si6 . Physica B 403, 1306–1308 (2008).

  22. 22

    Hertz, J. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

  23. 23

    Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

  24. 24

    Si, Q., Rabello, S., Ingersent, K. & Smith, J. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

  25. 25

    Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

  26. 26

    Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

  27. 27

    Paschen, S. et al. Quantum critical behaviour in Ce3Pd20Si6? J. Magn. Magn. Mater. 316, 90–92 (2007).

  28. 28

    Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi B 247, 476–484 (2010).

  29. 29

    Coleman, P. & Nevidomskyy, A. Frustration and the Kondo effect in heavy fermion materials. J. Low Temp. Phys. 161, 182–202 (2010).

  30. 30

    Sebastian, S. E. et al. Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3 . Proc. Natl Acad. Sci. USA 106, 7741–7744 (2009).

  31. 31

    Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3 . Science 327, 980–983 (2010).

  32. 32

    Kim, M. S. & Aronson, M. C. Heavy fermion compounds on the geometrically frustrated Shastry–Sutherland lattice. J. Phys. Condens. Matter 23, 164204 (2011).

  33. 33

    Helm, T. et al. Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd2−xCexCuO4 revealed by Shubnikov–de Haas oscillations. Phys. Rev. Lett. 103, 157002 (2009).

  34. 34

    Prokofiev, A. et al. Crystal growth and composition-property relationship of Ce3Pd20Si6 single crystals. Phys. Rev. B 80, 235107 (2009).

Download references


The authors wish to thank S. Kirchner for useful discussions. The work was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 227378 and by the Austrian Science Foundation (project P19458-N16). A.M.S. thanks the SA-NRF (2072956) and the URC of the University of Johannesburg for financial assistance. R.Y. and Q.S. acknowledge the support of NSF Grant No. DMR-1006985 and the Robert A. Welch Foundation Grant No. C-1411.

Author information

S.P. initiated the study. S.P. and Q.S. designed the research. A.M.S. and A.P. synthesized and characterized the material. J.C., K-A.L., M.M. and H.W. performed magnetotransport measurements, A.S. and Y.S. magnetization measurements. T.S. led the low-temperature magnetization investigation. K-A.L., H.W., A.S. and S.P. analysed the data. R.Y. and Q.S. set up the theoretical framework and performed the calculations. S.P., Q.S. and R.Y. prepared the manuscript. All authors contributed to the discussion.

Correspondence to S. Paschen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1112 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading