Li–O2 and Li–S batteries with high energy storage

Subjects

An Erratum to this article was published on 15 December 2011

This article has been updated

The amount of energy that can be stored in Li-ion batteries is insufficient for the long-term needs of society, for example, for use in extended-range electric vehicles. Here, the energy-storage capabilities of Li–O2 and Li–S batteries are compared with that of Li-ion, their performances are reviewed, and the challenges that need to be overcome if such batteries are to succeed are highlighted.

Abstract

Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li–air (O2) and Li–S. The energy that can be stored in Li–air (based on aqueous or non-aqueous electrolytes) and Li–S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li–air and Li–S justify the continued research effort that will be needed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representations of Li-ion, non-aqueous and aqueous Li–O2 and Li–S cells.
Figure 2: Practical specific energies for some rechargeable batteries, along with estimated driving distances and pack prices.
Figure 3: Challenges facing the non-aqueous Li–O2 battery.
Figure 4: First galvanostatic charge, i = 70 mA g−1 C (that is, Li2O2 oxidation) for various catalyst-containing Li–O2 cells in this study77.
Figure 5: Challenges facing the aqueous Li–O2 battery.
Figure 6: Load curve of an aqueous Li–O2 cell.
Figure 7: Challenges facing the Li–S battery.
Figure 8: Cycle-life data of Li–S cell.

Change history

  • 04 January 2012

    In the version of this Review originally published, in Table 1, the values in rows 2–5 of the 'Cell voltage' column appeared incorrectly; the full column should have read 3.8, 1.65, 2.2, 3.0 and 3.2. This has now been corrected in the HTML and PDF versions.

References

  1. 1

    Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Sol. Cells 9, 209–217 (1990).

    CAS  Google Scholar 

  2. 2

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  3. 3

    Schalkwijk, W.v. & Scrosati, B. Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, 2002).

    Google Scholar 

  4. 4

    Nazri, G-A. & Pistoia, G. Lithium Batteries: Science and Technology (Springer, 2003).

    Google Scholar 

  5. 5

    Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics 179, 752–760 (2008).

    CAS  Google Scholar 

  6. 6

    Bruce, P. G., Scrosati, B. & Tarascon, J-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS  Google Scholar 

  7. 7

    Bruce, P. G., Hardwick, L. J. & Abraham, K. M. Lithium-air and lithium-sulfur batteries. Mater. Res. Soc. Bull. 36, 506–512 (2011).

    CAS  Google Scholar 

  8. 8

    Lee, J-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011).

    CAS  Google Scholar 

  9. 9

    Neburchilov, V., Wang, H. J., Martin, J. J. & Qu, W. A review on air cathodes for zinc-air fuel cells. J. Power Sources 195, 1271–1291 (2010).

    CAS  Google Scholar 

  10. 10

    Li, Q. F. & Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002).

    CAS  Google Scholar 

  11. 11

    Beck, F. & Ruetschi, P. Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467–2482 (2000).

    CAS  Google Scholar 

  12. 12

    Encyclopedia of Electrochemical Power Sources (Elsevier, 2009).

  13. 13

    Hamlen, P. & Atwater, T. B. Handbook of Batteries (McGraw-Hill, 2001).

    Google Scholar 

  14. 14

    Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516 (2011).

    CAS  Google Scholar 

  15. 15

    Herbert, D. & Ulam, J. Electric dry cells and storage batteries. US patent 3,043,896 (1962).

  16. 16

    Ji, X. & Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 20, 9821–9826 (2010).

    CAS  Google Scholar 

  17. 17

    Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).

    CAS  Google Scholar 

  18. 18

    Hassoun, J. & Scrosati, B. A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010).

    CAS  Google Scholar 

  19. 19

    Ji, X., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature Commun. 2, 325 (2011).

    Google Scholar 

  20. 20

    Jeong, S. S. et al. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J. Power Sources 174, 745–750 (2007).

    CAS  Google Scholar 

  21. 21

    Wang, J. Z. et al. Sulfur–graphene composite for rechargeable lithium batteries. J. Power Sources 196, 7030–7034 (2011).

    CAS  Google Scholar 

  22. 22

    Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008).

    CAS  Google Scholar 

  23. 23

    Peled, E., Sternberg, Y., Gorenshtein, A. & Lavi, Y. Lithium–sulfur battery: Evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 136, 1621–1625 (1989).

    CAS  Google Scholar 

  24. 24

    Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    CAS  Google Scholar 

  25. 25

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  26. 26

    Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Li/air non-aqueous batteries. US patent 20070117007 (2007).

  27. 27

    Littauer, E. L. & Tsai, K. C. Anodic behavior of lithium in aqueous-electrolytes. J. Electrochem. Soc. 123, 771–776 (1976).

    CAS  Google Scholar 

  28. 28

    Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium−air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  29. 29

    Kraytsberg, A. & Ein-Eli, Y. Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2010).

    Google Scholar 

  30. 30

    Zhang, J-G. & Bruce, P. G. in Handbook of Batteries (eds Linden, D. & Reddy, T. B.) 38.46–38.73 (McGraw-Hill, 2010).

    Google Scholar 

  31. 31

    Mikhaylik, Y., Kovalev, I., Xu, J. & Schock, R. Rechargeable Li–S battery with specific energy 350 Wh/kg and specific power 3000 W/kg. Meet. Abstr. Electrochem. Soc. 801, 112 (2008).

    Google Scholar 

  32. 32

    Mikhaylik, Y. V. et al. High energy rechargeable Li–S cells for EV application: Status, remaining problems, and solutions. Meet. Abstr. Electrochem. Soc. 902, 216 (2009).

    Google Scholar 

  33. 33

    Pistoia, G. Batteries for Portable Devices (Elsevier, 2005).

    Google Scholar 

  34. 34

    Anderman, M. PHEV and EV Battery Technology Status and Vehicle and Battery Market Outlook (AABC Europe, 2011).

    Google Scholar 

  35. 35

    Zhang, S. S., Foster, D. & Read, J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J. Power Sources 195, 1235–1240 (2010).

    CAS  Google Scholar 

  36. 36

    Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium–air battery applications. J. Phys. Chem. C 113, 20127–20134 (2009).

    CAS  Google Scholar 

  37. 37

    Lu, Y-C., Gasteiger, H. A., Parent, M. C., Chiloyan, V. & Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State 13, A69–A72 (2010).

    CAS  Google Scholar 

  38. 38

    Trahey, L. et al. Activated lithium-metal-oxides as catalytic electrodes for Li–O2 cells. Electrochem. Solid State 14, A64–A66 (2011).

    CAS  Google Scholar 

  39. 39

    Stevens, P. et al. Development of a lithium air rechargeable battery. ECS Trans. 28, 1–12 (2010).

    CAS  Google Scholar 

  40. 40

    Hasegawa, S. et al. Study on lithium/air secondary batteries-stability of NASICON-type lithium ion conducting glass–ceramics with water. J. Power Sources 189, 371–377 (2009).

    CAS  Google Scholar 

  41. 41

    Zhang, T. et al. Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid-water solutions. J. Electrochem. Soc. 157, A214–A218 (2010).

    CAS  Google Scholar 

  42. 42

    Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    CAS  Google Scholar 

  43. 43

    Laoire, C. O., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME-LiPF6/O2 battery. J. Electrochem. Soc. 158, A302–A308 (2011).

    CAS  Google Scholar 

  44. 44

    Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190–A1195 (2002).

    CAS  Google Scholar 

  45. 45

    Read, J. et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1351–A1356 (2003).

    CAS  Google Scholar 

  46. 46

    Lu, Y-C. et al. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    CAS  Google Scholar 

  47. 47

    Lu, Y-C., Gasteiger, H. A., Crumlin, E., Robert McGuire, J. & Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J. Electrochem. Soc. 157, A1016–A1025 (2010).

    CAS  Google Scholar 

  48. 48

    Lu, Y-C., Gasteiger, H. A. & Shao-Horn, Y. Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li–air batteries. Electrochem. Solid State 14, A70–A74 (2011).

    CAS  Google Scholar 

  49. 49

    Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  Google Scholar 

  50. 50

    Débart, A., Bao, J., Armstrong, G. & Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 174, 1177–1182 (2007).

    Google Scholar 

  51. 51

    Débart, A., Paterson, A., Bao, J. & Bruce, P. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).

    Google Scholar 

  52. 52

    Kuboki, T., Okuyama, T., Ohsaki, T. & Takami, N. Lithium–air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources 146, 766–769 (2005).

    CAS  Google Scholar 

  53. 53

    Beattie, S. D., Manolescu, D. M. & Blair, S. L. High-capacity lithium–air cathodes. J. Electrochem. Soc. 156, A44–A47 (2009).

    CAS  Google Scholar 

  54. 54

    Yang, X-H., He, P. & Xia, Y-Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 11, 1127–1130 (2009).

    CAS  Google Scholar 

  55. 55

    Yang, X-H. & Xia, Y-Y. The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J. Solid State Electr. 14, 109–114 (2010).

    CAS  Google Scholar 

  56. 56

    Zhang, J., Xu, W., Li, X. & Liu, W. Air dehydration membranes for nonaqueous lithium–air batteries. J. Electrochem. Soc. 157, A940–A946 (2010).

    CAS  Google Scholar 

  57. 57

    Zhang, J., Xu, W. & Liu, W. Oxygen-selective immobilized liquid membranes for operation of lithium–air batteries in ambient air. J. Power Sources 195, 7438–7444 (2010).

    CAS  Google Scholar 

  58. 58

    Lu, Y. C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energ. Environ. Sci. 4, 2999–3007 (2011).

    CAS  Google Scholar 

  59. 59

    Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energ. Environ. Sci. 4, 2952–2958 (2011).

    CAS  Google Scholar 

  60. 60

    Xu, W., Xiao, J., Wang, D., Zhang, J. & Zhang, J-G. Crown ethers in nonaqueous electrolytes for lithium/air batteries. Electrochem. Solid St. 13, A48–A51 (2010).

    CAS  Google Scholar 

  61. 61

    Wang, D., Xiao, J., Xu, W. & Zhang, J-G. High capacity pouch-type Li–air batteries. J. Electrochem. Soc. 157, A760–A764 (2010).

    CAS  Google Scholar 

  62. 62

    Zhang, J-G., Wang, D., Xu, W., Xiao, J. & Williford, R. E. Ambient operation of Li/air batteries. J. Power Sources 195, 4332–4337 (2010).

    CAS  Google Scholar 

  63. 63

    Xiao, J. et al. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 157, A487–A492 (2010).

    CAS  Google Scholar 

  64. 64

    Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991).

    CAS  Google Scholar 

  65. 65

    Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).

    CAS  Google Scholar 

  66. 66

    Xu, W. et al. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. J. Power Sources 196, 3894–3899 (2011).

    CAS  Google Scholar 

  67. 67

    Freunberger, S. A. et al. Fundamental mechanism of the lithium–air battery. Meet. Abstr. - Electrochem. Soc. 1003, 399 (2010).

    Google Scholar 

  68. 68

    Veith, G. M., Dudney, N. J., Howe, J. & Nanda, J. Spectroscopic characterization of solid discharge products in Li-air cells with aprotic carbonate electrolytes. J. Phys. Chem. C 115, 14325–14333 (2011).

    CAS  Google Scholar 

  69. 69

    Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    CAS  Google Scholar 

  70. 70

    Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    CAS  Google Scholar 

  71. 71

    McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents' critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).

    CAS  Google Scholar 

  72. 72

    Hassoun, J., Croce, F., Armand, M. & Scrosati, B. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem. Int. Ed. 50, 2999–3002 (2011).

    CAS  Google Scholar 

  73. 73

    Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    CAS  Google Scholar 

  74. 74

    Bardé, F., Bruce, P. G., Freunberger, S. A. & Hardwick, L. J. Cathode catalyst for rechargeable metal–air & rechargeable metal–air battery. JPO patent 059494 (2010).

  75. 75

    Bardé, F., Bruce, P. G., Freunberger, S. A., Chen, Y. & Hardwick, L. J. Catalyst loaded onto carbon for rechargeable nonaqueous metal–air battery. JPO patent 053888 (2011).

  76. 76

    Cheng, H. & Scott, K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J. Power Sources 195, 1370–1374 (2010).

    CAS  Google Scholar 

  77. 77

    Giordani, V., Freunberger, S. A., Bruce, P. G., Tarascon, J-M. & Larcher, D. H2O2 decomposition reaction as selecting tool for catalysts in Li–O2 cells. Electrochem. Solid St. 13, A180–A183 (2010).

    CAS  Google Scholar 

  78. 78

    Sawyer, D. T. & Roberts, J. L. Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes. J. Electroanal. Chem. 12, 90–101 (1966).

    CAS  Google Scholar 

  79. 79

    Kumar, B. et al. A solid-state, rechargeable, long cycle life lithium-air battery. J. Electrochem. Soc. 157, A50–A54 (2010).

    CAS  Google Scholar 

  80. 80

    Wang, Y. & Zhou, H. A lithium–air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 195, 358–361 (2010).

    CAS  Google Scholar 

  81. 81

    He, P., Wang, Y. & Zhou, H. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem. Commun. 12, 1686–1689 (2010).

    CAS  Google Scholar 

  82. 82

    He, P., Wang, Y. G. & Zhou, H. S. The effect of alkalinity and temperature on the performance of lithium–air fuel cell with hybrid electrolytes. J. Power Sources 196, 5611–5616 (2011).

    CAS  Google Scholar 

  83. 83

    Wang, Y. G. & Zhou, H. S. A lithium–air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. Chem. Commun. 46, 6305–6307 (2010).

    CAS  Google Scholar 

  84. 84

    Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).

    CAS  Google Scholar 

  85. 85

    Cheon, S-E. et al. Rechargeable lithium sulfur battery. J. Electrochem. Soc. 150, A800–A805 (2003).

    CAS  Google Scholar 

  86. 86

    Choi, Y-J., Kim, K-W., Ahn, H-J. & Ahn, J-H. Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J. Alloy Compd. 449, 313–316 (2008).

    CAS  Google Scholar 

  87. 87

    Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977).

    Google Scholar 

  88. 88

    Yamin, H. & Peled, E. Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983).

    CAS  Google Scholar 

  89. 89

    Ryu, H. S., Guo, Z., Ahn, H. J., Cho, G. B. & Liu, H. Investigation of discharge reaction mechanism of lithium liquid electrolyte sulfur battery. J. Power Sources 189, 1179–1183 (2009).

    CAS  Google Scholar 

  90. 90

    Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. & Peled, E. Lithium sulfur battery — oxidation reduction-mechanisms of polysulphides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988).

    CAS  Google Scholar 

  91. 91

    Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

    CAS  Google Scholar 

  92. 92

    Degott, P., Polymere Carbone-Soufre Synthese et Proprietes Electrochimiques PhD Thesis, l'Institut National Polytechnique de Grenoble (1986).

    Google Scholar 

  93. 93

    Visco, S.J., Mailhe, C.C., Jonghe, L.C.D. & Armand, M.B. A novel class of organosulfur electrodes for energy storage. J. Electrochem. Soc. 136, 661–664 (1989).

    CAS  Google Scholar 

  94. 94

    Liu, M., Visco, S.J. & Jonghe, L.C.D. Electrochemical properties of organic disulfide/thiolate redox couples. J. Electrochem. Soc. 136, 2570–2575 (1989).

    CAS  Google Scholar 

  95. 95

    Kiya, Y., Iwata, A., Sarukawa, T., Henderson, J. C. & Abruña, H. D. Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)-poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. J. Power Sources 173, 522–530 (2007).

    CAS  Google Scholar 

  96. 96

    Kiya, Y., Henderson, J. C., Hutchison, G. R. & Abruna, H. D. Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. J. Mater. Chem. 17, 4366–4376 (2007).

    CAS  Google Scholar 

  97. 97

    Xu, G. X., Bi, L. Q., Yu, T. & Wen, L. PVC disulfide as cathode materials for secondary lithium batteries. Chinese J. Polym. Sci. 24, 307–313 (2006).

    CAS  Google Scholar 

  98. 98

    Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).

    CAS  Google Scholar 

  99. 99

    Yamin, H., Penciner, J., Gorenshtain, A., Elam, M. & Peled, E. The electrochemical behavior of polysulfides in tetrahydrofuran. J. Power Sources 14, 129–134 (1985).

    CAS  Google Scholar 

  100. 100

    Peled, E., Gorenshtein, A., Segal, M. & Sternberg, Y. Rechargeable lithium–sulfur battery. J. Power Sources 26, 269–271 (1989).

    CAS  Google Scholar 

  101. 101

    Tobishima, S-I., Yamamoto, H. & Matsuda, M. Study on the reduction species of sulfur by alkali metals in nonaqueous solvents. Electrochim. Acta 42, 1019–1029 (1997).

    CAS  Google Scholar 

  102. 102

    Chu, M-Y. Liquid electrolyte lithium–sulfur batteries. US patent 6030720 (2000).

  103. 103

    Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. J. Electrochem. Soc. 155, A368–A373 (2008).

    CAS  Google Scholar 

  104. 104

    Choi, J-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 52, 2075–2082 (2007).

    CAS  Google Scholar 

  105. 105

    Marmorstein, D. et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000).

    CAS  Google Scholar 

  106. 106

    Wang, J. L., Yang, J., Xie, J. Y., Xu, N. X. & Li, Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun. 4, 499–502 (2002).

    CAS  Google Scholar 

  107. 107

    Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003).

    CAS  Google Scholar 

  108. 108

    Yang, Y. et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010).

    CAS  Google Scholar 

  109. 109

    Han, S-C. et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. J. Electrochem. Soc. 150, A889–A893 (2003).

    CAS  Google Scholar 

  110. 110

    Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006).

    CAS  Google Scholar 

  111. 111

    Niu, J. J., Wang, J. N., Jiang, Y., Su, L. F. & Ma, J. An approach to carbon nanotubes with high surface area and large pore volume. Micropor. Mesopor. Mater. 100, 1–5 (2007).

    CAS  Google Scholar 

  112. 112

    Yuan, L., Yuan, H., Qiu, X., Chen, L. & Zhu, W. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J. Power Sources 189, 1141–1146 (2009).

    CAS  Google Scholar 

  113. 113

    Song, M-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).

    CAS  Google Scholar 

  114. 114

    Choi, Y. J. et al. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scripta T129, 62–65 (2007).

    CAS  Google Scholar 

  115. 115

    Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).

    CAS  Google Scholar 

  116. 116

    Yu, X-g. et al. Lithium storage in conductive sulfur-containing polymers. J. Electroanal. Chem. 573, 121–128 (2004).

    CAS  Google Scholar 

  117. 117

    Wang, J. et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta 51, 4634–4638 (2006).

    CAS  Google Scholar 

  118. 118

    Lai, C., Gao, X. P., Zhang, B., Yan, T. Y. & Zhou, Z. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J. Phys. Chem. C 113, 4712–4716 (2009).

    CAS  Google Scholar 

  119. 119

    Liang, C., Dudney, N. J. & Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724–4730 (2009).

    CAS  Google Scholar 

  120. 120

    Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).

    CAS  Google Scholar 

  121. 121

    Li, S., Xie, M., Liu, J., Wang, H. & Yan, H. Layer structured sulfur/expanded graphite composite as cathode for lithium battery. Electrochem. Solid St. 14, A105–A107 (2011).

    CAS  Google Scholar 

  122. 122

    Cao, Y. et al. Sandwich-type functionalized graphene sheet–sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 13, 7660–7665 (2011).

    CAS  Google Scholar 

  123. 123

    Wu, F. et al. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057–6063 (2011).

    CAS  Google Scholar 

  124. 124

    Qiu, L., Zhang, S., Zhang, L., Sun, M. & Wang, W. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochim. Acta 55, 4632–4636 (2010).

    CAS  Google Scholar 

  125. 125

    Demir-Cakan, R. et al. Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011).

    CAS  Google Scholar 

  126. 126

    Mirzaeian, M. & Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 54, 7444–7451 (2009).

    CAS  Google Scholar 

  127. 127

    Zhang, G. Q. et al. Lithium–air batteries using SWNT/CNF buckypapers as air electrodes. J. Electrochem. Soc. 157, A953–A956 (2010).

    CAS  Google Scholar 

  128. 128

    Albertus, P. et al. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling. J. Electrochem. Soc. 158, A343–A351 (2011).

    CAS  Google Scholar 

  129. 129

    Mikhaylic, Y. V. Electrolytes for lithium sulfur cells. US patent 7354680 (2008).

  130. 130

    http://oharacorp.com/pdf/LIC-GC.pdf

  131. 131

    Imanishi, N. et al. Lithium anode for lithium–air secondary batteries. J. Power Sources 185, 1392–1397 (2008).

    CAS  Google Scholar 

  132. 132

    Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).

    CAS  Google Scholar 

  133. 133

    Zhang, T., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O. Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. Electrochem. Solid State 14, A45–A48 (2011).

    CAS  Google Scholar 

  134. 134

    Debart, A., Dupont, L., Patrice, R. & Tarascon, J-M. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. Solid State Sci. 8, 640–651 (2006).

    CAS  Google Scholar 

  135. 135

    Zhang, S. S., Foster, D. & Read, J. A high energy density lithium/sulfur-oxygen hybrid battery. J. Power Sources 195, 3684–3688 (2010).

    CAS  Google Scholar 

  136. 136

    http://www.nissanusa.com/leaf-electric-car/specs-features/index#/leaf-electric-car/specs-features/index.

  137. 137

    US Advanced Battery Consortium USABC Goals for Advanced Batteries for EVs (2006). Available at: http://uscar.org/commands/files_download.php?files_id=27.

Download references

Acknowledgements

P.G.B. is indebted to the EPRSC and Toyota Motor Europe for support. The authors wish to express their thanks to S. Visco, M. Armand and R. Demir-Cakan and the ALISTORE-ERI members for helpful discussions. P.G.B. and J.M.T. are members of ALISTORE-ERI — European Network of Excellence on Lithium Batteries.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bruce, P., Freunberger, S., Hardwick, L. et al. Li–O2 and Li–S batteries with high energy storage. Nature Mater 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing