The amount of energy that can be stored in Li-ion batteries is insufficient for the long-term needs of society, for example, for use in extended-range electric vehicles. Here, the energy-storage capabilities of Li–O2 and Li–S batteries are compared with that of Li-ion, their performances are reviewed, and the challenges that need to be overcome if such batteries are to succeed are highlighted.
Abstract
Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li–air (O2) and Li–S. The energy that can be stored in Li–air (based on aqueous or non-aqueous electrolytes) and Li–S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li–air and Li–S justify the continued research effort that will be needed.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Challenges and possibilities for aqueous battery systems
Communications Materials Open Access 26 May 2023
-
Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte
Nature Communications Open Access 05 April 2023
-
A jigsaw-structured artificial solid electrolyte interphase for high-voltage lithium metal batteries
Communications Materials Open Access 22 February 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout








Change history
04 January 2012
In the version of this Review originally published, in Table 1, the values in rows 2–5 of the 'Cell voltage' column appeared incorrectly; the full column should have read 3.8, 1.65, 2.2, 3.0 and 3.2. This has now been corrected in the HTML and PDF versions.
References
Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Sol. Cells 9, 209–217 (1990).
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Schalkwijk, W.v. & Scrosati, B. Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, 2002).
Nazri, G-A. & Pistoia, G. Lithium Batteries: Science and Technology (Springer, 2003).
Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics 179, 752–760 (2008).
Bruce, P. G., Scrosati, B. & Tarascon, J-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).
Bruce, P. G., Hardwick, L. J. & Abraham, K. M. Lithium-air and lithium-sulfur batteries. Mater. Res. Soc. Bull. 36, 506–512 (2011).
Lee, J-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 1, 34–50 (2011).
Neburchilov, V., Wang, H. J., Martin, J. J. & Qu, W. A review on air cathodes for zinc-air fuel cells. J. Power Sources 195, 1271–1291 (2010).
Li, Q. F. & Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110, 1–10 (2002).
Beck, F. & Ruetschi, P. Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467–2482 (2000).
Encyclopedia of Electrochemical Power Sources (Elsevier, 2009).
Hamlen, P. & Atwater, T. B. Handbook of Batteries (McGraw-Hill, 2001).
Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516 (2011).
Herbert, D. & Ulam, J. Electric dry cells and storage batteries. US patent 3,043,896 (1962).
Ji, X. & Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 20, 9821–9826 (2010).
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Mater. 8, 500–506 (2009).
Hassoun, J. & Scrosati, B. A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010).
Ji, X., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature Commun. 2, 325 (2011).
Jeong, S. S. et al. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J. Power Sources 174, 745–750 (2007).
Wang, J. Z. et al. Sulfur–graphene composite for rechargeable lithium batteries. J. Power Sources 196, 7030–7034 (2011).
Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008).
Peled, E., Sternberg, Y., Gorenshtein, A. & Lavi, Y. Lithium–sulfur battery: Evaluation of dioxolane-based electrolytes. J. Electrochem. Soc. 136, 1621–1625 (1989).
Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).
Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).
Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Li/air non-aqueous batteries. US patent 20070117007 (2007).
Littauer, E. L. & Tsai, K. C. Anodic behavior of lithium in aqueous-electrolytes. J. Electrochem. Soc. 123, 771–776 (1976).
Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium−air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).
Kraytsberg, A. & Ein-Eli, Y. Review on Li–air batteries—opportunities, limitations and perspective. J. Power Sources 196, 886–893 (2010).
Zhang, J-G. & Bruce, P. G. in Handbook of Batteries (eds Linden, D. & Reddy, T. B.) 38.46–38.73 (McGraw-Hill, 2010).
Mikhaylik, Y., Kovalev, I., Xu, J. & Schock, R. Rechargeable Li–S battery with specific energy 350 Wh/kg and specific power 3000 W/kg. Meet. Abstr. Electrochem. Soc. 801, 112 (2008).
Mikhaylik, Y. V. et al. High energy rechargeable Li–S cells for EV application: Status, remaining problems, and solutions. Meet. Abstr. Electrochem. Soc. 902, 216 (2009).
Pistoia, G. Batteries for Portable Devices (Elsevier, 2005).
Anderman, M. PHEV and EV Battery Technology Status and Vehicle and Battery Market Outlook (AABC Europe, 2011).
Zhang, S. S., Foster, D. & Read, J. Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J. Power Sources 195, 1235–1240 (2010).
Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium–air battery applications. J. Phys. Chem. C 113, 20127–20134 (2009).
Lu, Y-C., Gasteiger, H. A., Parent, M. C., Chiloyan, V. & Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid State 13, A69–A72 (2010).
Trahey, L. et al. Activated lithium-metal-oxides as catalytic electrodes for Li–O2 cells. Electrochem. Solid State 14, A64–A66 (2011).
Stevens, P. et al. Development of a lithium air rechargeable battery. ECS Trans. 28, 1–12 (2010).
Hasegawa, S. et al. Study on lithium/air secondary batteries-stability of NASICON-type lithium ion conducting glass–ceramics with water. J. Power Sources 189, 371–377 (2009).
Zhang, T. et al. Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid-water solutions. J. Electrochem. Soc. 157, A214–A218 (2010).
Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. J. Phys. Chem. C 114, 9178–9186 (2010).
Laoire, C. O., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. Rechargeable lithium/TEGDME-LiPF6/O2 battery. J. Electrochem. Soc. 158, A302–A308 (2011).
Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190–A1195 (2002).
Read, J. et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 150, A1351–A1356 (2003).
Lu, Y-C. et al. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).
Lu, Y-C., Gasteiger, H. A., Crumlin, E., Robert McGuire, J. & Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J. Electrochem. Soc. 157, A1016–A1025 (2010).
Lu, Y-C., Gasteiger, H. A. & Shao-Horn, Y. Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li–air batteries. Electrochem. Solid State 14, A70–A74 (2011).
Ogasawara, T., Debart, A., Holzapfel, M., Novak, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).
Débart, A., Bao, J., Armstrong, G. & Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 174, 1177–1182 (2007).
Débart, A., Paterson, A., Bao, J. & Bruce, P. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521–4524 (2008).
Kuboki, T., Okuyama, T., Ohsaki, T. & Takami, N. Lithium–air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources 146, 766–769 (2005).
Beattie, S. D., Manolescu, D. M. & Blair, S. L. High-capacity lithium–air cathodes. J. Electrochem. Soc. 156, A44–A47 (2009).
Yang, X-H., He, P. & Xia, Y-Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 11, 1127–1130 (2009).
Yang, X-H. & Xia, Y-Y. The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J. Solid State Electr. 14, 109–114 (2010).
Zhang, J., Xu, W., Li, X. & Liu, W. Air dehydration membranes for nonaqueous lithium–air batteries. J. Electrochem. Soc. 157, A940–A946 (2010).
Zhang, J., Xu, W. & Liu, W. Oxygen-selective immobilized liquid membranes for operation of lithium–air batteries in ambient air. J. Power Sources 195, 7438–7444 (2010).
Lu, Y. C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energ. Environ. Sci. 4, 2999–3007 (2011).
Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energ. Environ. Sci. 4, 2952–2958 (2011).
Xu, W., Xiao, J., Wang, D., Zhang, J. & Zhang, J-G. Crown ethers in nonaqueous electrolytes for lithium/air batteries. Electrochem. Solid St. 13, A48–A51 (2010).
Wang, D., Xiao, J., Xu, W. & Zhang, J-G. High capacity pouch-type Li–air batteries. J. Electrochem. Soc. 157, A760–A764 (2010).
Zhang, J-G., Wang, D., Xu, W., Xiao, J. & Williford, R. E. Ambient operation of Li/air batteries. J. Power Sources 195, 4332–4337 (2010).
Xiao, J. et al. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 157, A487–A492 (2010).
Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991).
Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargeable Li–air batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403–405 (2010).
Xu, W. et al. Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. J. Power Sources 196, 3894–3899 (2011).
Freunberger, S. A. et al. Fundamental mechanism of the lithium–air battery. Meet. Abstr. - Electrochem. Soc. 1003, 399 (2010).
Veith, G. M., Dudney, N. J., Howe, J. & Nanda, J. Spectroscopic characterization of solid discharge products in Li-air cells with aprotic carbonate electrolytes. J. Phys. Chem. C 115, 14325–14333 (2011).
Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).
Freunberger, S. A. et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).
McCloskey, B. D., Bethune, D. S., Shelby, R. M., Girishkumar, G. & Luntz, A. C. Solvents' critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161–1166 (2011).
Hassoun, J., Croce, F., Armand, M. & Scrosati, B. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem. Int. Ed. 50, 2999–3002 (2011).
Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).
Bardé, F., Bruce, P. G., Freunberger, S. A. & Hardwick, L. J. Cathode catalyst for rechargeable metal–air & rechargeable metal–air battery. JPO patent 059494 (2010).
Bardé, F., Bruce, P. G., Freunberger, S. A., Chen, Y. & Hardwick, L. J. Catalyst loaded onto carbon for rechargeable nonaqueous metal–air battery. JPO patent 053888 (2011).
Cheng, H. & Scott, K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J. Power Sources 195, 1370–1374 (2010).
Giordani, V., Freunberger, S. A., Bruce, P. G., Tarascon, J-M. & Larcher, D. H2O2 decomposition reaction as selecting tool for catalysts in Li–O2 cells. Electrochem. Solid St. 13, A180–A183 (2010).
Sawyer, D. T. & Roberts, J. L. Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes. J. Electroanal. Chem. 12, 90–101 (1966).
Kumar, B. et al. A solid-state, rechargeable, long cycle life lithium-air battery. J. Electrochem. Soc. 157, A50–A54 (2010).
Wang, Y. & Zhou, H. A lithium–air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 195, 358–361 (2010).
He, P., Wang, Y. & Zhou, H. A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem. Commun. 12, 1686–1689 (2010).
He, P., Wang, Y. G. & Zhou, H. S. The effect of alkalinity and temperature on the performance of lithium–air fuel cell with hybrid electrolytes. J. Power Sources 196, 5611–5616 (2011).
Wang, Y. G. & Zhou, H. S. A lithium–air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. Chem. Commun. 46, 6305–6307 (2010).
Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).
Cheon, S-E. et al. Rechargeable lithium sulfur battery. J. Electrochem. Soc. 150, A800–A805 (2003).
Choi, Y-J., Kim, K-W., Ahn, H-J. & Ahn, J-H. Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J. Alloy Compd. 449, 313–316 (2008).
Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977).
Yamin, H. & Peled, E. Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources 9, 281–287 (1983).
Ryu, H. S., Guo, Z., Ahn, H. J., Cho, G. B. & Liu, H. Investigation of discharge reaction mechanism of lithium liquid electrolyte sulfur battery. J. Power Sources 189, 1179–1183 (2009).
Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. & Peled, E. Lithium sulfur battery — oxidation reduction-mechanisms of polysulphides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988).
Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).
Degott, P., Polymere Carbone-Soufre Synthese et Proprietes Electrochimiques PhD Thesis, l'Institut National Polytechnique de Grenoble (1986).
Visco, S.J., Mailhe, C.C., Jonghe, L.C.D. & Armand, M.B. A novel class of organosulfur electrodes for energy storage. J. Electrochem. Soc. 136, 661–664 (1989).
Liu, M., Visco, S.J. & Jonghe, L.C.D. Electrochemical properties of organic disulfide/thiolate redox couples. J. Electrochem. Soc. 136, 2570–2575 (1989).
Kiya, Y., Iwata, A., Sarukawa, T., Henderson, J. C. & Abruña, H. D. Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)-poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. J. Power Sources 173, 522–530 (2007).
Kiya, Y., Henderson, J. C., Hutchison, G. R. & Abruna, H. D. Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. J. Mater. Chem. 17, 4366–4376 (2007).
Xu, G. X., Bi, L. Q., Yu, T. & Wen, L. PVC disulfide as cathode materials for secondary lithium batteries. Chinese J. Polym. Sci. 24, 307–313 (2006).
Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).
Yamin, H., Penciner, J., Gorenshtain, A., Elam, M. & Peled, E. The electrochemical behavior of polysulfides in tetrahydrofuran. J. Power Sources 14, 129–134 (1985).
Peled, E., Gorenshtein, A., Segal, M. & Sternberg, Y. Rechargeable lithium–sulfur battery. J. Power Sources 26, 269–271 (1989).
Tobishima, S-I., Yamamoto, H. & Matsuda, M. Study on the reduction species of sulfur by alkali metals in nonaqueous solvents. Electrochim. Acta 42, 1019–1029 (1997).
Chu, M-Y. Liquid electrolyte lithium–sulfur batteries. US patent 6030720 (2000).
Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. J. Electrochem. Soc. 155, A368–A373 (2008).
Choi, J-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 52, 2075–2082 (2007).
Marmorstein, D. et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000).
Wang, J. L., Yang, J., Xie, J. Y., Xu, N. X. & Li, Y. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun. 4, 499–502 (2002).
Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003).
Yang, Y. et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010).
Han, S-C. et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. J. Electrochem. Soc. 150, A889–A893 (2003).
Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006).
Niu, J. J., Wang, J. N., Jiang, Y., Su, L. F. & Ma, J. An approach to carbon nanotubes with high surface area and large pore volume. Micropor. Mesopor. Mater. 100, 1–5 (2007).
Yuan, L., Yuan, H., Qiu, X., Chen, L. & Zhu, W. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J. Power Sources 189, 1141–1146 (2009).
Song, M-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004).
Choi, Y. J. et al. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scripta T129, 62–65 (2007).
Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).
Yu, X-g. et al. Lithium storage in conductive sulfur-containing polymers. J. Electroanal. Chem. 573, 121–128 (2004).
Wang, J. et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta 51, 4634–4638 (2006).
Lai, C., Gao, X. P., Zhang, B., Yan, T. Y. & Zhou, Z. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J. Phys. Chem. C 113, 4712–4716 (2009).
Liang, C., Dudney, N. J. & Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724–4730 (2009).
Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).
Li, S., Xie, M., Liu, J., Wang, H. & Yan, H. Layer structured sulfur/expanded graphite composite as cathode for lithium battery. Electrochem. Solid St. 14, A105–A107 (2011).
Cao, Y. et al. Sandwich-type functionalized graphene sheet–sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 13, 7660–7665 (2011).
Wu, F. et al. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057–6063 (2011).
Qiu, L., Zhang, S., Zhang, L., Sun, M. & Wang, W. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries. Electrochim. Acta 55, 4632–4636 (2010).
Demir-Cakan, R. et al. Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011).
Mirzaeian, M. & Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 54, 7444–7451 (2009).
Zhang, G. Q. et al. Lithium–air batteries using SWNT/CNF buckypapers as air electrodes. J. Electrochem. Soc. 157, A953–A956 (2010).
Albertus, P. et al. Identifying capacity limitations in the Li/oxygen battery using experiments and modeling. J. Electrochem. Soc. 158, A343–A351 (2011).
Mikhaylic, Y. V. Electrolytes for lithium sulfur cells. US patent 7354680 (2008).
Imanishi, N. et al. Lithium anode for lithium–air secondary batteries. J. Power Sources 185, 1392–1397 (2008).
Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).
Zhang, T., Imanishi, N., Hirano, A., Takeda, Y. & Yamamoto, O. Stability of Li/polymer electrolyte-ionic liquid composite/lithium conducting glass ceramics in an aqueous electrolyte. Electrochem. Solid State 14, A45–A48 (2011).
Debart, A., Dupont, L., Patrice, R. & Tarascon, J-M. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. Solid State Sci. 8, 640–651 (2006).
Zhang, S. S., Foster, D. & Read, J. A high energy density lithium/sulfur-oxygen hybrid battery. J. Power Sources 195, 3684–3688 (2010).
US Advanced Battery Consortium USABC Goals for Advanced Batteries for EVs (2006). Available at: http://uscar.org/commands/files_download.php?files_id=27.
Acknowledgements
P.G.B. is indebted to the EPRSC and Toyota Motor Europe for support. The authors wish to express their thanks to S. Visco, M. Armand and R. Demir-Cakan and the ALISTORE-ERI members for helpful discussions. P.G.B. and J.M.T. are members of ALISTORE-ERI — European Network of Excellence on Lithium Batteries.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Bruce, P., Freunberger, S., Hardwick, L. et al. Li–O2 and Li–S batteries with high energy storage. Nature Mater 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3191
This article is cited by
-
Challenges and possibilities for aqueous battery systems
Communications Materials (2023)
-
A jigsaw-structured artificial solid electrolyte interphase for high-voltage lithium metal batteries
Communications Materials (2023)
-
Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte
Nature Communications (2023)
-
Eutectic salt-assisted planetary centrifugal deagglomeration for single-crystalline cathode synthesis
Nature Energy (2023)
-
Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis
Nature Catalysis (2023)