Combining the efforts of physicists, materials scientists, economists and resource-strategy researchers opens up an interdisciplinary route enabling the substitution of rare elements by more abundant ones, serving as a guideline for the development of novel materials.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Nature Communications Open Access 21 September 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Nature Mater. 10, 157 (2011).
Nakamura, E. & Sato, K. Nature Mater. 10, 158–161 (2011).
Service, R. F. Science 327, 1596–1597 (2010).
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. Science 293, 673–676 (2001).
Sinclair, D. C., Adams, T. B., Morrison, F. D. & West, A. R. Appl. Phys. Lett. 80, 2153–2155 (2002).
Lunkenheimer, P. et al. Eur. Phys. J. Special Topics 180, 61–89 (2010).
Haertling, G. H. J. Am. Ceram. Soc. 82, 797–818 (1999).
Pan, M-J. & Randall, C. A. IEEE Electr. Insul. Mag. 26, 44–50 (2010).
Kishi, H., Mizuno, Y. & Chazono, H. Jpn. J. Appl. Phys. 42, 1–15 (2003).
Adams, T. B., Sinclair, D. C. & West, A. R. Adv. Mater. 14, 1321–1323 (2002).
Park, T. et al. Phys. Rev. Lett. 94, 017002 (2005).
Krohns, S. et al. Appl. Phys. Lett. 94, 122903 (2009).
Kanai, H., Furukawa, O., Abe, H. & Yamashita, Y. J. Am. Ceram. Soc. 77, 2620–2624 (1994).
Hirose, N. & West, A. R. J. Am. Ceram. Soc. 79, 1633–1641 (1996).
Choi, S. W., Shrout, R. T. R., Jang, S. J. & Bhalla, A. S. Ferroelectrics 100, 29–38 (1989).
Haeni, J. H. et al. Nature 430, 758–761 (2004).
Ad-hoc Working Group on Defining Critical Raw Materials Critical raw materials for the EU (European Commission, June 2010).
Reller, A. et al. Gaia 18, 127–135 (2009).
United Geological Survey (USGS): Mineral Commodity Summaries 1995-2011 (US Department of the Interior, 2011).
Herfindahl, O. C. Concentration in the US Steel Industry PhD thesis, Columbia Univ. (1950).
Hirschmann, A. O. National Power and the Structure of Foreign Trade (Univ. California Press,1945).
Huang, C. & Litzenberger, R. Foundations for Financial Economics (Pearson, 1988).
Copeland, T. E. et al. Financial Theory and Corporate Policy (Addison Wesley, 2006).
Hamilton, J. D. Time Series Analysis (Princeton Univ. Press, 1994).
Kato, Y. et al. Nature Geosci. 4, 535–539 (2011).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft via the TRR80.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krohns, S., Lunkenheimer, P., Meissner, S. et al. The route to resource-efficient novel materials. Nature Mater 10, 899–901 (2011). https://doi.org/10.1038/nmat3180
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3180
This article is cited by
-
Effects of (Ag, Ta) Doping on the Microstructure and Dielectric Properties of Titanium Dioxide Functional Ceramics
Journal of Electronic Materials (2023)
-
Flash sintering preparation and colossal dielectric origin of (Al0.5Ta0.5)0.05Ti0.95O2 ceramics
Journal of Materials Science: Materials in Electronics (2022)
-
Microstructural characteristics and dielectric properties of (Nb, La) co-doped TiO2 ceramics sintered at different temperatures
Applied Physics A (2022)
-
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Nature Communications (2021)
-
Interface effects and defect clusters inducing thermal stability and giant dielectric response in (Ta+Y)-co-doped TiO2 ceramics
Journal of Materials Science: Materials in Electronics (2021)