Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The route to resource-efficient novel materials

Combining the efforts of physicists, materials scientists, economists and resource-strategy researchers opens up an interdisciplinary route enabling the substitution of rare elements by more abundant ones, serving as a guideline for the development of novel materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of several compounds including CDCs regarding their suitability as capacitors: CDC materials La15/8Sr1/8NiO4 (ref. 12) and CaCu3Ti4O12 (refs 4,6), ferroelectrics BaTiO3 (ref. 14) and barium-doped lead zirconate titanate (PBZT)13, ferroelectric SrTiO3:DyScO3 multilayers16, and the so-called relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN:PT)15.
Figure 2: World map of mineral deposits and reserves of TiO2 and BaSO4.
Figure 3: Time-development prospects of three CDC materials from the perspectives of materials science, resource strategy and resource management, including an extrapolation up to the year 2015.


  1. Nature Mater. 10, 157 (2011).

  2. Nakamura, E. & Sato, K. Nature Mater. 10, 158–161 (2011).

    Article  CAS  Google Scholar 

  3. Service, R. F. Science 327, 1596–1597 (2010).

    Article  CAS  Google Scholar 

  4. Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. Science 293, 673–676 (2001).

    Article  CAS  Google Scholar 

  5. Sinclair, D. C., Adams, T. B., Morrison, F. D. & West, A. R. Appl. Phys. Lett. 80, 2153–2155 (2002).

    Article  CAS  Google Scholar 

  6. Lunkenheimer, P. et al. Eur. Phys. J. Special Topics 180, 61–89 (2010).

    Article  Google Scholar 

  7. Haertling, G. H. J. Am. Ceram. Soc. 82, 797–818 (1999).

    Article  CAS  Google Scholar 

  8. Pan, M-J. & Randall, C. A. IEEE Electr. Insul. Mag. 26, 44–50 (2010).

    Article  CAS  Google Scholar 

  9. Kishi, H., Mizuno, Y. & Chazono, H. Jpn. J. Appl. Phys. 42, 1–15 (2003).

    Article  CAS  Google Scholar 

  10. Adams, T. B., Sinclair, D. C. & West, A. R. Adv. Mater. 14, 1321–1323 (2002).

    Article  CAS  Google Scholar 

  11. Park, T. et al. Phys. Rev. Lett. 94, 017002 (2005).

    Article  Google Scholar 

  12. Krohns, S. et al. Appl. Phys. Lett. 94, 122903 (2009).

    Article  Google Scholar 

  13. Kanai, H., Furukawa, O., Abe, H. & Yamashita, Y. J. Am. Ceram. Soc. 77, 2620–2624 (1994).

    Article  CAS  Google Scholar 

  14. Hirose, N. & West, A. R. J. Am. Ceram. Soc. 79, 1633–1641 (1996).

    Article  CAS  Google Scholar 

  15. Choi, S. W., Shrout, R. T. R., Jang, S. J. & Bhalla, A. S. Ferroelectrics 100, 29–38 (1989).

    Article  CAS  Google Scholar 

  16. Haeni, J. H. et al. Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  17. Ad-hoc Working Group on Defining Critical Raw Materials Critical raw materials for the EU (European Commission, June 2010).

  18. Reller, A. et al. Gaia 18, 127–135 (2009).

    Article  Google Scholar 

  19. United Geological Survey (USGS): Mineral Commodity Summaries 1995-2011 (US Department of the Interior, 2011).

  20. Herfindahl, O. C. Concentration in the US Steel Industry PhD thesis, Columbia Univ. (1950).

    Google Scholar 

  21. Hirschmann, A. O. National Power and the Structure of Foreign Trade (Univ. California Press,1945).

    Google Scholar 

  22. Huang, C. & Litzenberger, R. Foundations for Financial Economics (Pearson, 1988).

    Google Scholar 

  23. Copeland, T. E. et al. Financial Theory and Corporate Policy (Addison Wesley, 2006).

    Google Scholar 

  24. Hamilton, J. D. Time Series Analysis (Princeton Univ. Press, 1994).

    Google Scholar 

  25. Kato, Y. et al. Nature Geosci. 4, 535–539 (2011).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Deutsche Forschungsgemeinschaft via the TRR80.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Lunkenheimer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krohns, S., Lunkenheimer, P., Meissner, S. et al. The route to resource-efficient novel materials. Nature Mater 10, 899–901 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing