Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conductive dense hydrogen


Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, Tc, of 200–400 K (ref. 1), and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid2. It may potentially be recovered metastably at ambient pressures3. However, experiments carried out at low temperatures, T<100 K (refs 4, 5), showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260–270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Pressure shift and broadening of the Raman H2 and D2 vibrons at 295 K.
Figure 2: Raman spectra of hydrogen at high pressures and room temperature.
Figure 3: Electrical measurements of the hydrogen samples.
Figure 4: Phase diagram of hydrogen.


  1. 1

    Ashcroft, N. W. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1750 (1968).

    CAS  Article  Google Scholar 

  2. 2

    Babaev, E., Sudbo, A. & Ashcroft, N. W. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature 431, 666–668 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Brovman, E. G., Kagan, Y. & Kholas, A. Structure of metallic hydrogen at zero pressure. Sov. Phys. JETP 34, 1300–1315 (1972).

    Google Scholar 

  4. 4

    Loubeyre, P., Occelli, F. & LeToullec, R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416, 613–617 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Akahama, Y., Kawamura, H., Hirao, N., Ohishi, Y. & Takemura, K. Raman scattering and x-ray diffraction experiments for phase III of solid hydrogen. J. Phys.: Conf. Ser. 215, 012056 (2010).

    Google Scholar 

  6. 6

    Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764–770 (1935).

    CAS  Article  Google Scholar 

  7. 7

    Johnson, K. A. & Ashcroft, N. W. Structure and bandgap closure in dense hydrogen. Nature 403, 632–635 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Mao, H. K. & Hemley, R. J. Ultrahigh pressure transitions in solid hydrogen. Rev. Mod. Phys. 66, 671–692 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Hanfland, M., Hemley, R. J. & Mao, H. K. Optical absorption measurements of hydrogen at megabar pressures. Phys. Rev. B 43, 8767–8770 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Eggert, J. H. et al. Absorption and reflectance in hydrogen up to 230 GPa: Implications for metallization. Phys. Rev. Lett. 66, 193–196 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Narayana, C., Luo, H., Orloff, J. & Ruoff, A. L. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature 393, 46–49 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Vereshchagin, L. F., Yakovlev, E. N. & Timofeev, Y. A. Possibility of transition of hydrogen into the metallic state. Lett. JETP 21, 85–86 (1975).

    Google Scholar 

  13. 13

    Eremets, M. I., Struzhkin, V. V., Mao, H. K. & Hemley, R. J. Exploring superconductivity in low-Z materials at megabar pressures. Physica B 329, 1312–1316 (2003).

    Article  Google Scholar 

  14. 14

    Weir, S. T., Mitchell, A. C. & Nellis, W. J. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 1860–1863 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Hawke, P. S. et al. Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41, 994–997 (1978).

    CAS  Article  Google Scholar 

  16. 16

    Pavlovskii, A. I. et al. Proc. 4th International Conference on Megagauss Magnetic Field Generation and Related Topics, Megagauss Technology and Pulsed Power Applications 255–262 (Pergamon, 1987).

    Google Scholar 

  17. 17

    Boriskov, G. V. et al. Conductivity and permittivity of hydrogen under isentropic magnetic compression up to 3 Mbar. J. Low Temp. Phys. 159, 307–310 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Akahama, Y. et al. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B 82, 060101(R) (2010).

    Article  Google Scholar 

  20. 20

    Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nature Phys. 3, 473–476 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Hemley, R. J., Mao, H. K. & Shu, J. F. Low-frequency vibrational dynamics and structure of hydrogen at megabar pressures. Phys. Rev. Lett. 65, 2670–2673 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Edwards, P. P. & Sienko, M. J. What is a metal? Int. Rev. Phys. Chem. 3, 83–137 (1983).

    CAS  Article  Google Scholar 

  23. 23

    Stadele, M. & Martin, R. M. Metallization of molecular hydrogen: Predictions from exact-exchange calculations. Phys. Rev. Lett. 84, 6070–6073 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Bonev, S. A., Schwegler, E., Ogitsu, T. & Galli, G. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature 431, 669–672 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Morales, M. A., Pierleonib, C., Schwegler, E. & Ceperley, D. M. Evidence for a first-order liquid–liquid transition in high-pressure hydrogen from ab initio simulations. Proc. Natl Acad. Sci. 107, 12803 (2010).

    Google Scholar 

  26. 26

    Tamblyn, I. & Bonev, S. A. Structure and phase boundaries of compressed liquid hydrogen. Phys. Rev. Lett. 104, 065702 (2010).

    Article  Google Scholar 

  27. 27

    Eremets, M. I. & Trojan, I. A. Evidence of maximum in the melting curve of hydrogen at megabar pressures. Lett. JETP 89, 198–203 (2009).

    Article  Google Scholar 

  28. 28

    Baer, B. J., Chang, M. E. & Evans, W. J. Raman shift of stressed diamond anvils: Pressure calibration and culet geometry dependence. J. Appl. Phys. 104, 034504 (2008).

    Article  Google Scholar 

  29. 29

    Baer, B. J., Evans, W. J. & Yoo, C-S. Coherent anti-stokes Raman spectroscopy of highly compressed solid deuterium at 300 K: Evidence for a new phase and implications for the band gap. Phys. Rev. Lett. 98, 235503 (2007).

    Article  Google Scholar 

  30. 30

    Attaccalite, C. & Sorella, S. Stable liquid hydrogen at high pressure by a novel ab initio molecular-dynamics calculation. Phys. Rev. Lett. 100, 114501 (2008).

    Article  Google Scholar 

Download references


Support provided by the Max Planck Society, DFG under the grant SPP 1236, and the European Research Council under the 2010-Advanced Grant 267777 is gratefully acknowledged. We appreciate the valuable comments and support of M. O. Andreae.

Author information




The authors contributed equally.

Corresponding authors

Correspondence to M. I. Eremets or I. A. Troyan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1117 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eremets, M., Troyan, I. Conductive dense hydrogen. Nature Mater 10, 927–931 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing