Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic structure of nanoclusters in oxide-dispersion-strengthened steels

This article has been updated

Abstract

Oxide-dispersion-strengthened steels are the most promising structural materials for next-generation nuclear energy systems because of their excellent resistance to both irradiation damage and high-temperature creep1,2,3,4. Although it has been known for a decade that the extraordinary mechanical properties of oxide-dispersion-strengthened steels originate from highly stabilized oxide nanoclusters with a size smaller than 5 nm, the structure of these nanoclusters has not been clarified and remains as one of the most important scientific issues in nuclear materials research2,3,4,5,6,7. Here we report the atomic-scale characterization of the oxide nanoclusters using state-of-the-art Cs-corrected transmission electron microscopy. This study provides compelling evidence that the nanoclusters have a defective NaCl structure with a high lattice coherency with the bcc steel matrix. Plenty of point defects as well as strong structural affinity of nanoclusters with the steel matrix seem to be the most important reasons for the unusual stability of the clusters at high temperatures and in intensive neutron irradiation fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical microstructure of the ODS steel.
Figure 2: EELS chemical mapping of the nanoclusters.
Figure 3: HAADF-STEM characterization of the nanocluster.
Figure 4: Structure modelling of the nanocluster from [110]bcc direction.
Figure 5: Structure characterization of the nanocluster from the [110]bcc direction.

Similar content being viewed by others

Change history

  • 27 October 2011

    In the version of this Letter originally published, the bar over the number 1 is missing in two instances. This error has been corrected only in the HTML version of the Letter. The PDF has no change.

References

  1. Grimes, R. W. & Nuttall, W. J. Generating the option of a two-stage nuclear renaissance. Science 329, 799–803 (2010).

    Article  CAS  Google Scholar 

  2. Odette, G. R., Alinger, M. J. & Wirth, B. D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).

    Article  CAS  Google Scholar 

  3. Charit, I. & Murty, K. L. Structural materials issues for the next generation fission reactors. J. Oper. Manage. 62, 67–74 (2010).

    Google Scholar 

  4. Miller, M. K., Fu, C. L., Krcmar, M., Hoelzer, D. T. & Liu, C. T. Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels. Front. Mater. Sci. China 3, 9–14 (2009).

    Article  Google Scholar 

  5. Fisher, J. J. Dispersion strengthened ferritic alloy for use in liquid metal fast breeder reactors. US Patent 4,075,010, (1978).

  6. Ukai, S. et al. Alloying design of oxide dispersion-strengthened ferritic steel for long-life FBRs core materials. J. Nucl. Mater. 204, 65–73 (1993).

    Article  CAS  Google Scholar 

  7. Ukai, S. & Fujiwara, M. Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 307, 749–757 (2002).

    Article  Google Scholar 

  8. Schneibel, J. H. et al. Development of porosity in an oxide dispersion-strengthened ferritic alloy containing nanoscale oxide particles. Scr. Mater. 57, 1040–1043 (2007).

    Article  CAS  Google Scholar 

  9. Klueh, R. L. et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. J. Nucl. Mater. 307, 773–777 (2002).

    Article  Google Scholar 

  10. Yamashita, S., Akasaka, N. & Ohnuki, S. Nano-oxide particle stability of 9-12Cr grain morphology modified ODS steels under neutron irradiation. J. Nucl. Mater. 329–33, 377–381 (2004).

    Article  Google Scholar 

  11. Okuda, T. & Fujiwara, M. Dispersion behavior of oxide particles in mechanically alloyed ODS Steel. J. Mater. Sci. Lett. 14, 1600–1603 (1995).

    Article  CAS  Google Scholar 

  12. Yamashita, S., Ohtsuka, S., Akasaka, N., Ukai, S. & Ohnuki, S. Formation of nanoscale complex oxide particles in mechanically alloyed ferritic steel. Phil. Mag. Lett. 84, 525–529 (2004).

    Article  CAS  Google Scholar 

  13. Klimiankou, M., Lindau, R. & Moslang, A. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels. Micron 36, 1–8 (2005).

    Article  CAS  Google Scholar 

  14. Kishimoto, H., Alinger, M. J., Odette, G. R. & Yamamoto, T. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys. J. Nucl. Mater. 329–33, 369–371 (2004).

    Article  Google Scholar 

  15. Klimiankou, M., Lindau, R. & Moslang, A. HRTEM study of yttrium oxide particles in ODS steels for fusion reactor application. J. Cryst. Growth 249, 381–387 (2003).

    Article  CAS  Google Scholar 

  16. Coppola, R., Klimiankou, M., Magnani, M., Moslang, A. & Valli, M. Helium bubble evolution in F82H-mod—correlation between SANS and TEM. J. Nucl. Mater. 329–33, 1057–1061 (2004).

    Article  Google Scholar 

  17. Hayashi, T., Sarosi, P. M., Schneibel, J. H. & Mills, M. J. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater. 56, 1407–1416 (2008).

    Article  CAS  Google Scholar 

  18. Sakasegawa, H. et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy. J. Nucl. Mater. 384, 115–118 (2009).

    Article  CAS  Google Scholar 

  19. Villars, P. & Cenzual, K. Pearson’s crystal data: Crystal structure database for inorganic compounds Release 2008/9 (ASM International).

  20. Miller, M. K., Hoelzer, D. T., Kenik, E. A. & Russell, K. F. Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13, 387–392 (2005).

    Article  CAS  Google Scholar 

  21. Miller, M. K., Russell, K. F. & Hoelzer, D. T. Characterization of precipitates in MA/ODS ferritic alloys. J. Nucl. Mater. 351, 261–268 (2006).

    Article  CAS  Google Scholar 

  22. Alinger, M. J., Odette, G. R. & Hoelzer, D. T. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys. Acta Mater. 57, 392–406 (2009).

    Article  CAS  Google Scholar 

  23. Sakasegawa, H. et al. Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy. J. Nucl. Mater. 417, 229–232 (2011).

    Article  CAS  Google Scholar 

  24. Williams, C. A., Marquis, E. A., Cerezo, A. & Smith, G. D. W. Nanoscale characterisation of ODS-Eurofer 97 steel: An atom-probe tomography study. J. Nucl. Mater. 400, 37–45 (2010).

    Article  CAS  Google Scholar 

  25. Brocq, M. et al. Nanoscale characterisation and clustering mechanism in an Fe–Y2O3 model ODS alloy processed by reactive ball milling and annealing. Acta Mater. 58, 1806–1814 (2010).

    Article  CAS  Google Scholar 

  26. Larson, D. J., Maziasz, P. J., Kim, I. S. & Miyahara, K. Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe–12Cr–3W–0.4Ti+Y2O3 ferritic alloy. Scr. Mater. 44, 359–364 (2001).

    Article  CAS  Google Scholar 

  27. Fu, C. L., Krcmar, M., Painter, G. S. & Chen, X. Q. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).

    Article  CAS  Google Scholar 

  28. Ohtsuka, S., Ukai, S., Fujiwara, M., Kaito, T. & Narita, T. Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents. J. Nucl. Mater. 329–33, 372–376 (2004).

    Article  Google Scholar 

  29. Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).

    Article  CAS  Google Scholar 

  30. Xu, J., Liu, C. T., Miller, M. K. & Chen, H. M. Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy. Phys. Rev. B 79, 020204 (2009).

    Article  Google Scholar 

  31. Huisman, L. M., Carlsson, A. E., Gelatt, C. D. & Ehrenreich, H. Mechanisms for energetic-vacancy stabilization—TiO and TiC. Phys. Rev. B 22, 991–1006 (1980).

    Article  CAS  Google Scholar 

  32. Zener, C. J. Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 20, 950–953 (1949).

    Article  CAS  Google Scholar 

  33. Hoelzer, D. T. et al. Influence of particle dispersions on the high-temperature strength of ferritic alloys. J. Nucl. Mater. 367, 166–172 (2007).

    Article  Google Scholar 

  34. Ishizuka, K. A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71–83 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by ‘Global COE for Materials Research and Education’, ‘World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials’, MEXT, Japan. We thank Okunishi of JEOL for his technical assistance and D. T. Hoelzer at ORNL, USA for providing 14YWT samples for this study.

Author information

Authors and Affiliations

Authors

Contributions

M.W.C. and C.T.L. planned this project. A.H. and M.W.C. designed research, analysed data, constructed models and wrote the paper. A.H. contributed to STEM experiments and image simulation. T.F. contributed to EELS analysis. Y.R.W. contributed to TEM specimen preparation. J.H.S. and C.T.L. contributed to sample preparation. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. W. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, A., Fujita, T., Wen, Y. et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nature Mater 10, 922–926 (2011). https://doi.org/10.1038/nmat3150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing