Abstract
In comparing a material's resistance to distort under mechanical load rather than to alter in volume, Poisson's ratio offers the fundamental metric by which to compare the performance of any material when strained elastically. The numerical limits are set by ½ and −1, between which all stable isotropic materials are found. With new experiments, computational methods and routes to materials synthesis, we assess what Poisson's ratio means in the contemporary understanding of the mechanical characteristics of modern materials. Central to these recent advances, we emphasize the significance of relationships outside the elastic limit between Poisson's ratio and densification, connectivity, ductility and the toughness of solids; and their association with the dynamic properties of the liquids from which they were condensed and into which they melt.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Transition of deformation modes from bending to auxetic compression in origami-based metamaterials for head protection from impact
Scientific Reports Open Access 27 July 2023
-
Solids that are also liquids: elastic tensors of superionic materials
npj Computational Materials Open Access 19 January 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








Change history
24 October 2011
In the print version of this Review, in Box 2, 'an order of magnitude' should read 'orders of magnitude' in the sixth sentence from the end. In the caption for Fig. 1, the credit given for part a actually related to part b. In Fig. 5c, the arrow labels for the inner and outer core are transposed. In the Acknowledgements, C. Kurkjian is spelt incorrectly. The online versions are correct.
References
Poisson, S. D. Traité de Mécanique 2, 476 (1811).
Poisson, S. D. Ann. Chim. Phys. (eds Gay-Lussac, L. J. & Arago, F.) 36, 384–385 (1827).
Cauchy, A. L. Sur les équations qui expriment les conditions d'équilibre, ou les lois du mouvement intérieur d'un corps solide élastique ou non élastique. Exercices de Mathématiques vol. 3 (1828).
Voigt, W. Allgemeine Formeln für die Bestimmung der Elasticitätsconstanten von Krystallen durch die Beobachtung der Biegung und Drillung von Prismen. Ann. Phys. 16, 273–310; 398–415 (1882).
Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity (Dover, 1944).
Haeri, A. Y., Weidner, D. J. & Parise, J. B. Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson's ratio. Science 257, 650–652 (1992).
Evans, K. E., Nkansah, M. A., Hutchinson, I. J. & Rogers, S. C. Molecular network design, Nature 353, 124, (1991). This paper introduces the term auxetic, from the root word for growth, to describe expansion under tension.
Lakes, R. S. Foam structures with a negative Poisson's ratio. Science 235, 1038–1040 (1987).
Caddock, B. D. & Evans, K. E. Microporous materials with negative Poisson's ratios. I: Microstructure and mechanical properties. J. Phys. D. 22, 1877–1882 (1989).
Milton, G. Composite materials with Poisson's ratios close to −1. J. Mech. Phys. Solids 40, 1105–1137 (1992).
Lakes, R. S. Advances in negative Poisson's ratio materials. Adv. Mater. 5, 293–296 (1993).
Alderson, K. L. & Evans, K. E. The fabrication of microporous polyethylene having negative Poisson's ratio. Polymer, 33, 4435–4438 (1992).
Baughman, R. H., Shacklette, J-M., Zakhidev, A. A. & Stafström, S. Negative Poisson's ratio as a common feature of cubic metals. Nature 392, 362–365 (1998).
Sanchez-Valle, C. et al. Negative Poisson's ratios in siliceous zeolite MFI-silicalite. J. Chem. Phys. 128, 184503 (2008).
Hall, L. J. et al. Sign change of Poisson's ratio for carbon nanotube sheets, Science 320, 504–507 (2008).
Smith, C. W., Wootton, R. J. & Evans, K. E. Interpretation of experimental data for Poisson's ratio of highly nonlinear materials. Exp. Mech. 39, 356–362 (1999).
Tschoegl, N. W., Knauss, W. J. & Emri, I. Poisson's ratio in linear viscoelasticity, a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002).
Lakes, R. S. & Wineman, A. On Poisson's ratio in linearly viscoelastic solids. J. Elast. 85, 46–63 (2006).
Lu, H., Zhang, X. & Krauss, W. G. Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation: studies on poly(methyl methacrylate). Polym. Eng. Sci. 37, 1053–1064 (1997).
Wang, Y. C. & Lakes, R. S. Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson's ratio. J. Comp. Mater. 39, 1645–1657 (2005).
Smith, C. W., Grima, J. N. & Evans, K. E., A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta. Mater. 48, 4349–4356 (2000).
Baughman, R. H. et al. Negative Poisson's ratios for extreme states of matter. Science 288, 2018–2022 (2000).
Grima, J. N., Jackson, R., Alderson, A. & Evans, K. E. Do zeolites have negative Poisson's ratios? Adv. Mater. B 12, 1912–1918 (2000).
Poirier, J-P. Introduction to the Physics of the Earth's Interior (Cambridge Univ. Press, 2000).
Cohen, M. L. Calculation of bulk moduli of diamond and zinc–blende solids. Phys. Rev. B 32, 7988–7991 (1985).
Fukumoto, A. First-principles pseudopotential calculations of the elastic properties of diamond, Si, and Ge. Phys. Rev. B 42, 7462–7469 (1990).
Perottoni, C. A. & Da Jornada, J. A. H. First-principles calculation of the structure and elastic properties of a 3D-polymerized fullerite. Phys. Rev. B 65, 224208 (2002).
Cottrell, A. H. in Advances in Physical Metallurgy (eds Charles, J. A. & Smith, G. C.) (Inst. Metals, London, 1990).
Kelly, A., Tyson, W. R. & Cottrell, A. H. Ductile and brittle crystals. Phil. Mag. 15, 567–586 (1967).
Jiang, M. Q. & Dai, L. H. Short-range-order effects on the intrinsic plasticity of metallic glasses. Phil. Mag. Lett. 90, 269–277 (2010).
McQueen, R. G., Hopson, J. W. & Fritz, J. N. Optical technique for determining rarefaction wave velocities at very high pressures. Rev. Sci. Instrum. 53, 245–250 (1982).
Santamaría-Pérez, D. et al. X-ray diffraction measurements of Mo melting at 119 GPa and the high pressure phase diagram. J. Chem. Phys. 130, 124509 (2009).
Hixson, R. S., Boness, D. A. & Shaner, J. W., Acoustic velocities and phase transitions in molybdenum under strong shock compression. Phys. Rev. Lett. 62, 637–640 (1989).
Nguyen, J. H. & Holmes, N. C. Melting of iron at the physical conditions of the Earth's core. Nature 427, 339–342 (2004).
Jensen, B. J., Cherne, F. J. & Cooley, J. C. Shock melting of cerium. Phys. Rev. B 81, 214109 (2010).
Greaves, G. N. et al. Zeolite collapse and polyamorphism. J. Phys. Cond. Mat. 19, 415102 (2007).
Zha, C-S., Hemley, R. J., Mao, H-K., Duffy, T. S. & Meade, C. Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys. Rev. B 50, 13105–13112 (1994).
Zeng, Z-Y., Hu, C-E., Cai L-C., Chen, X-R. & Jing, F-Q. Lattice dynamics and thermodynamics of molybdenum from first-principles calculations. J. Phys. Chem. B 114, 298–310 (2010).
Davies, R. A. et al. Geometric, electronic and elastic properties of dental silver amalgam γ-(Ag3Sn), γ1-(Ag2Hg3), γ2-(Sn8Hg) phases, comparison of experiment and theory. Intermetallics 18, 756–760 (2010).
Rouxel, T. Elastic properties and short-to-medium range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007).
Makishima, A. & Mackenzie, J. D. Calculation of bulk modulus, shear modulus and Poisson's ratio of glass. J. Non-Cryst. Sol. 17, 147–157 (1975).
Antao, S. M. et al. Network rigidity in GeSe2 glass at high pressure. Phys. Rev. Lett. 100, 115501 (2008).
Nicholas, J., Sinogeikin, S., Kieffer, J. & Bass J. A high pressure Brillouin scattering study of vitreous boron oxide up to 57 GPa. J. Non-Cryst. Sol. 349, 30–34 (2004).
Rouxel, T., Ji, H., Guin, J. P., Augereau, F. & Rufflé, B. Indentation deformation mechanism in glass: densification versus shear flow. J. Appl. Phys. 107, 094903 (2010).
Rouxel, T., Ji, H., Hammouda, T. & Moreac, A. Poisson's ratio and the densification of glass under high pressure. Phys. Rev. Lett. 100, 225501 (2008).
Das, B. M. Advanced Soil Mechanics 2nd edn (Spon, 2002).
Ji, H., Robin, E. & Rouxel, T. Physics and mechanics of the deformation of plasticine: macroscopic indentation behaviour for temperature between 103–293 K. J. Mech. Mat. 41, 199–209 (2009).
Lewandowski, J. J., Wang, W. H. & Greer, A. L. Intrinsic plasticity or brittleness of metallic glasses. Phil. Mag. Lett 85, 77–87 (2005).
Lewandowski, J. J. & Greer, A. L., Temperature rise at shear bands in metallic glasses. Nature Mater. 5, 15–18 (2006).
Bridge, B. & Higazy, A. A. A model of the compositional dependence of the elastic moduli of multicomponent oxide glasses. Phys. Chem. Glasses 27, 1–14 (1986).
Sreeram, A. N., Varshneya, A. K. & Swiler, D. R. Molar volume and elastic properties of multicomponent chalcogenide glasses. J. Non-Cryst. Sol. 128, 294–309 (1991).
Moysan, C., Riedel, R., Harshe, R., Rouxel, T. & Augereau, F. Mechanical characterization of a polysiloxane-derived SiOC glass, J. Europ. Ceram. Soc. 27 397–403 (2007).
Miracle, D. B. A structural model for metallic glasses. Nature Mater. 3, 697–701 (2004).
Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing density and short-to-medium range order in metallic glasses. Nature 439, 419–425 (2006).
Hessinger, J., White, B. E. & Pohl, R. O. Elastic properties of amorphous and crystalline ice films. Planet. Space Sci. 44, 937–944 (1996).
Loerting, T. & Giovambattista, N., Amorphous ices: experiments and numerical simulations, J. Phys. Cond. Mat. 18, R919–R977 (2006).
Mishima, O., Calvert, L. D. & Whalley, E. 'Melting ice' I at 77 K and 10 kbar: a new method of making amorphous materials. Nature 310, 393–395 (1984).
Gibson, L. J. & Ashby, M. F. Cellular Solids 2nd edn (Cambridge Univ. Press, 1997).
Beer, F. P. & Johnston, E. R. Mechanics of Materials (McGraw Hill, 1981); 2nd edn (1992).
Lakes, R. S. Negative Poisson's ratio materials. Science 238, 551 (1987).
Wojciechowski, K. W. Two-dimensional isotropic system with a negative Poisson ratio. Phys. Lett. A 137, 60–64 (1989).
Grima, J. N., Alderson, A. & Evans, K. E. Auxetic behaviour from rotating rigid units. Phys. Stat. Solidi B 242, 561–75 (2005).
Rothenburg, L., Berlin, A. A. & Bathurst, R. J. Microstructure of isotropic materials with negative Poisson's ratio. Nature 354, 470–472 (1991).
Silva, S. P. et al. Cork: properties, capabilities and applications. Int. Mater. Rev. 50, 345–365 (2005).
Grima, J. N. et al. Hexagonal honeycombs with zero Poisson's ratios and enhanced stiffness. Adv. Eng. Mater. 12, 855–862 (2010).
Barré de Saint-Venant, Resumé des Leçons sur l'application de la mécanique à l'établissement des constructions et des machines. Première section. De la Résistance des corps solides par Navier. 3ème édition avec des notes et des Appendices (Paris, 1848).
Lempriere, B. M. Poisson's ratio in orthotropic materials. AIAA J. 6, 2226–2227 (1968).
Gunton, D. J. & Saunders, G. A. The Young's modulus and Poisson's ratio of arsenic, antimony, and bismuth. J. Mater. Sci. 7, 1061–1068 (1972).
Kimizuka, H., Kaburaki, H. & Kogure, Y. Mechanism for negative Poisson ratios over the α-β transition of cristobalite, SiO2: a molecular-dynamics study. Phys. Rev. Lett. 84, 5548–5551 (2000).
Williams, J. J., Smith, C. W. & Evans, K. E. Off-axis elastic properties and the effect of extraframework species on structural flexibility of the NAT-type zeolites: simulations of structure and elastic properties, Chem. Mater. 19, 2423–2434 (2007).
Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B. & Artioli, G. J. Am. Chem. Soc. 124, 5466–5475 (2002).
Lethbridge, Z. A. D., Walton R. I., Marmier, A. S. H., Smith, C. & Evans, K. E. Elastic anisotropy and extreme Poisson's ratios in single crystals. Acta Mater. 58, 6444–6451 (2010).
Goodwin, A. L., Keen, D. A. & Tucker, G. Large negative linear compressibility of Ag3[Co(CN)6], Proc. Natl Acad. Sci. USA 105, 18708–18713 (2008).
Goodwin, A. L. et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319, 794 (2008).
Mary, T. A., Evans, J. S. O., Vogt, T. & Sleight, A. W. Negative thermal expansion from 0.3 K to 1050 K in ZrW2O8 . Science 272, 90–92 (1996).
Bridgman, P. W. The Physics of High Pressure (Bell, 1949).
Greaves, G. N. & Sen, S. Inorganic glasses, glass-forming liquids and amorphising solids. Adv. Phys. 56, 1–166 (2007).
Poole, P. H., Grande, T., Angell, C. A. & McMillan, P. F. Science 275, 322 (1997).
Greaves, G. N. et al. Detection of first order liquid–liquid phase transitions in yttrium oxide–aluminium oxide melts. Science 322, 566–570 (2008).
Hirotsu, S. Elastic anomaly near the critical point of volume phase transition in polymer gels. Macromolecules 23, 903–905 (1990).
Lakshtanov, D. L., Sinogeikin, S. V. & Bass, J. D. High-temperature phase transitions and elasticity of silica polymorphs. Phys. Chem. Miner. 34, 11–22 (2007).
McKnight, R. E. A. et al. Grain size dependence of elastic anomalies accompanying the alpha-beta phase transition in polycrystalline quartz. J. Phys. Cond. Mat. 20, 075229 (2008).
Li, C., Hu, Z. & Li, Y. Poisson's ratio in polymer gels near the phase-transition point. Phys. Rev. E 48, 603–606 (1993).
Dong, L. Stone, D. S. & Lakes, R. S. Softening of bulk modulus and negative Poisson's ratio in barium titanate ceramic near the Curie point. Phil. Mag. Lett. 90, 23–33 (2010).
Alefeld, G., Volkl, J. & Schaumann, G. Elastic diffusion relaxation. Phys. Status Solidi 37, 337–351 (1970).
Boehler, R. & Ross, M. Melting curve of aluminum in a diamond cell to 0.8 Mbar: implications for iron. Earth Planet. Sci. Lett. 153, 223 (1997).
McMillan, P. F. et al. Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory. J. Phys. Cond. Mat. 19, 415101 (2007).
Greaves, G. N. et al. Composition and polyamorphism in supercooled yttria–alumina melts. J. Non-Cryst. Solids 357, 435–441 (2011).
Inamura, Y., Katyama, Y., Ursumi, W. & Funakoshi, K. I. Transformations in the intermediate-range structure of SiO2 glass under high pressure and temperature. Phys. Rev. Lett. 93, 015501 (2004).
Richet, P. & Gillet, P. Pressure-induced amorphisation of minerals: a review. Eur. J. Mineral 9, 589–600 (1997).
Greaves, G.N. et al. Rheology of collapsing zeolites amorphised by temperature and pressure. Nature Mater. 2, 622–629 (2003).
Greaves, G. N., Meneau, F., Majérus, O., Jones, D. & Taylor, J. Identifying the vibrations that destabilise crystals and which characterise the glassy state. Science 308, 1299–1302 (2005).
Haines, J. et al. Topologically ordered amorphous silica obtained from the collapsed siliceous zeolite, silicalite-1-F: a step toward “perfect” glasses. J. Am. Chem. Soc. 131, 12333–12338 (2009).
Keen, D. A. et al. Structural description of pressure-induced amorphisation in ZrW2O8 . Phys. Rev. Lett. 98, 225501 (2007).
Bennett, T. D. et al. Structure and properties of an amorphous metal–organic framework. Phys. Rev. Lett. 104, 115503 (2010).
Lethbridge, Z. A. D., Walton, R. I., Bosak, A. & Krisch, M. Single-crystal elastic constants of the zeolite analcime measured by inelastic X-ray scattering. Chem. Phys. Lett. 471 286–289 (2009).
Peral, I. & Iniguez, J. Amorphization induced by pressure: results for zeolites and general implications. Phys. Rev. Lett. 97, 225502 (2006).
Novikov, V. N. & Sokolov, A. P. Poisson's ratio and the fragility of glass-forming liquids. Nature 431, 961–963 (2004).
Novikov, V. N., Ding, Y. & Sokolov, A. P. Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys. Rev. E 71, 061501 (2005).
Jiang, M. & Dai, L. Intrinsic correlation between fragility and bulk modulus in metallic glasses. Phys. Rev B 76, 054204 (2007).
Shintani, H. & Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nature Mater. 7, 870–877 (2008).
Yannopoulos, S. N. & Johari, G. P. Poisson's ratio and liquid's fragility. Nature 442, E7–E8 (2006).
Scopigno, T., Ruocco, G., Sette, F. & Monaco, G. Is the fragility of a liquid embedded in the properties of its glass? Science 302, 849–852 (2003).
Scopigno, T., Cangialosi, D. & Ruocco, G. Universal relation between viscous flow and fast dynamics in glass-forming materials. Phys. Rev. B 81, 100202(R) (2010).
Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).
Angell, C. A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205–221 (1988).
Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).
Dyre, J. C. Glasses: Heirs of liquid treasures. Nature Mater. 3, 749–750 (2004).
Johari, G. P. On Poisson's ratio of glass and liquid vitrification characteristics. Phil. Mag. 86, 1567–1579 (2006).
Nemilov, S. V. Structural aspect of possible interrelation between fragility (length) of glass forming melts and Poisson's ratio of glasses. J. Non-Cryst. Solids 353, 4613–4632 (2007).
Krisch, M. & Sette, F. in Light Scattering in Solids: Novel Materials and Techniques (eds Cardona, M & Merlin, R.) (Springer, 2007).
Xi, X. L. et al. Fracture of brittle metallic glasses: brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).
Pugh, S. F., Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45, 823–843 (1954).
Rosenhain, W. & Ewen, D. The intercrystalline cohesion of metals. J. Inst. Met. 10, 119–149 (1913).
Zhang, H., Srolovitz, D. J., Douglas, J. F & Warren, J. A. Grain boundaries exhibit the dynamics of glass-forming liquids. Proc. Natl Acad. Sci. USA 106, 7735–7740 (2009).
Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).
Acknowledgements
We acknowledge support from the Higher Education Funding Coucil for Wales, the Engineering and Physical Sciences Research Council (UK), the Natural Environment Research Council (UK), the National Science Foundation (USA), and the Ministry of Research and Higher Education in France. We are also indebted to J. Grima, T. Kelly, C. Kurkjian, J. Orava, R. Reis and R. Walton for discussions in the preparation of this Review.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Greaves, G., Greer, A., Lakes, R. et al. Poisson's ratio and modern materials. Nature Mater 10, 823–837 (2011). https://doi.org/10.1038/nmat3134
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3134
This article is cited by
-
Transition of deformation modes from bending to auxetic compression in origami-based metamaterials for head protection from impact
Scientific Reports (2023)
-
Solids that are also liquids: elastic tensors of superionic materials
npj Computational Materials (2023)
-
Study of optical, magnetic, electronic, thermodynamic and mechanical properties of effect of substitution Co on Ti site on half metallicity of XA type ordering of Ti2FeGe compound
Optical and Quantum Electronics (2023)
-
The Mathematical Analysis and Review of Water Hammering in Check Valves in Offshore Industry
Journal of The Institution of Engineers (India): Series C (2023)
-
Additive manufacturing and mechanical characterization of sinusoidal-based lattice structures: a numerical and experimental approach
Progress in Additive Manufacturing (2023)