Resolving strain in carbon nanotubes at the atomic level

Abstract

Details of how atomic structure responds to strain are essential for building a deeper picture of mechanics in nanomaterials. Here, we provide the first experimental evidence of atomic displacements associated with shear strain in single-walled carbon nanotubes (SWNTs) by direct imaging using aberration-corrected transmission electron microscopy. The atomic structure of a zig-zag SWNT is resolved with unprecedented accuracy and the strain induced by bending is mapped in two dimensions. We show the existence of a dominant non-uniform shear strain that varies along the SWNT axis. The direction of shear is opposite to what would be expected from a simple force applied perpendicular to the axis to produce the bending. This highlights the complex atomistic strain behaviour of beam-bending mechanics in highly anisotropic SWNTs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Low-voltage AC-HRTEM images of SWNTs.
Figure 2: Obtaining a 2D displacement map of a (28,0) SWNT.
Figure 3: X and Y components of the 2D displacement map and the 2D gradient maps.
Figure 4: Atomic model representations of several relevant key strain types applied to a (28,0) SWNT.

References

  1. 1

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  Google Scholar 

  2. 2

    Salvetat, J-P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Sazanova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  Google Scholar 

  4. 4

    Wei, X-L., Liu, Y., Chen, Q., Wang, M-S. & Peng, L-M. The very low shear modulus of multi-walled carbon nanotubes determined simultaneously with the axial Young’s modulus via in situ experiments. Adv. Funct. Mater. 18, 1555–1562 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Hsu, J-C., Chang, R-P. & Chang, W-J. Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory. Phys. Lett. A 372, 2757–2759 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Lu, P., Lee, H. P., Lu, C. & Zhang, P. Q. Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656–4659 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Yakobson, B. I., Brabec, C. J. & Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Falvo, M. R. et al. Bending and buckling of carbon nanotubes under large strain. Nature 389, 582–584 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Srivastava, D., Menon, M. & Kyeongjae, C. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83, 2973–2976 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Meyer, J. C. et al. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Suenaga, K. et al. Imaging active topological defects in carbon nanotubes. Nature Nano 2, 358–360 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Warner, J. H. et al. Structural transformations in graphene studied with high spatial and temporal resolution. Nature Nano 4, 500–504 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Gomez-Navarro, C. et al. Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Warner, J. H. et al. Investigating the diameter dependent stability of single-walled carbon nanotubes. ACS Nano 3, 1557–1563 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Warner, J. H., Rummeli, M. H., Gemming, T., Buchner, B. & Briggs, G. A. D. Direct imaging of rotational stacking faults in few layer graphene. Nano Lett. 9, 102–106 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Girit, C. O. et al. Graphene at the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Warner, J. H. et al. One dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. Phys. Rev. Lett. 102, 195504 (2009).

    Article  Google Scholar 

  20. 20

    Chuvilin, A. et al. Observations of chemical reactions at the atomic scale: dynamics of metal mediated fullerene coalescence and nanotube rupture. Angew. Chem. Int. Ed. 48, 193–196 (2009).

    Google Scholar 

  21. 21

    Sato, Y. et al. Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett. 8, 3151–3154 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Zhu, H., Suenaga, K., Hashimoto, A., Urita, K. & Iijima, S. Structural identification of single and double-walled carbon nanotubes by high resolution transmission electron microscopy. Chem. Phys. Lett. 412, 116–120 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Iijima, S., Brabec, C., Maiti, A. & Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Jia, C. L. & Urban, K. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater. 7, 57–61 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Hytch, M. J., Putaux, J-L. & Penisson, J-M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270–273 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Willems, B., Nistor, L. C., Ghica, C. & Van Tendeloo, G. Strain mapping around dislocations in diamond and cBN. Phys. Status Solidi A 202, 2224–2228 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Hytch, M. J., Snoeck, E. & Kilaas, Quantitative measurement of displacement and strain field from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Galindo, P. L. et al. The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Rosenauer, A., Fischer, U., Gerthsen, D. & Förster, A. Composition evaluations of InxGa1−xAs Stranski–Krastanow-island structures by strain state analysis. Appl. Phys. Lett. 71, 3868–3871 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Auld, B. A. Acoustic Fields and Waves in Solids Vol. 1 (Wiley, 1973).

    Google Scholar 

  32. 32

    Huang, M., Pascal, T. A., Kim, H., Goddard, W. A. III & Greer, J. R. Electronic-mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 11, 1241–1246 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Bichoutskaia, E. Modelling interwall interactions in carbon nanotubes: Fundamentals and device applications. Phil. Trans. R. Soc. A 365, 2893–2906 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

J.H.W. thanks the Royal Society and the Glasstone Fund for support. We thank Meijo Nanocarbon for their generous supply of SWNTs.

Author information

Affiliations

Authors

Contributions

J.H.W. designed and conducted the experiments, analysed the results and wrote the paper. N.P.Y. and A.I.K. assisted with the HRTEM. G.A.D.B. assisted with the analysis of the results.

Corresponding author

Correspondence to Jamie H. Warner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3277 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Warner, J., Young, N., Kirkland, A. et al. Resolving strain in carbon nanotubes at the atomic level. Nature Mater 10, 958–962 (2011). https://doi.org/10.1038/nmat3125

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing