Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures

Abstract

Self-assembly of molecular units into complex and functional superstructures is ubiquitous in biology. The number of superstructures realized by self-assembly of man-made nanoscale units is also growing. However, assemblies of colloidal inorganic nanocrystals1,2,3 are still at an elementary level, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we show how monodisperse colloidal octapod-shaped nanocrystals self-assemble, in a suitable solution environment, on two sequential levels. First, linear chains of interlocked octapods are formed, and subsequently the chains spontaneously self-assemble into three-dimensional superstructures. Remarkably, all the instructions for the hierarchical self-assembly are encoded in the octapod shape. The mechanical strength of these superstructures is improved by welding the constituent nanocrystals together.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Formation of octapod chains in toluene.
Figure 2: Assembly of chains into 3D superstructures.
Figure 3: Model of hierarchical assembly of octapods into 3D structures.
Figure 4: Welding of the 3D structures.

References

  1. Quan, Z. W. & Fang, J. Y. Superlattices with non-spherical building blocks. Nano Today 5, 390–411 (2010).

    Article  CAS  Google Scholar 

  2. Nie, Z. H., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  3. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: The road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    Article  CAS  Google Scholar 

  4. Guerrero-Martı´nez, A., Pérez-Juste, J., Carbó-Argibay, E., Tardajos, G. & Liz-Marzán, L. M. Gemini surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 48, 9484–9488 (2009).

    Article  Google Scholar 

  5. Ciszek, J. W. et al. Assembly of nanorods into designer superstructures: The role of templating, capillary forces, adhesion, and polymer hydration. ACS Nano 4, 259–266 (2010).

    Article  CAS  Google Scholar 

  6. Baranov, D. et al. Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 10, 743–749 (2010).

    Article  CAS  Google Scholar 

  7. Min, Y. J., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008).

    Article  CAS  Google Scholar 

  8. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  Google Scholar 

  9. Stebe, K. J., Lewandowski, E. & Ghosh, M. Oriented assembly of metamaterials. Science 325, 159–160 (2009).

    Article  CAS  Google Scholar 

  10. Huang, T., Zhao, Q. A., Xiao, J. Y. & Qi, L. M. Controllable self-assembly of PbS nanostars into ordered structures: Close-packed arrays and patterned arrays. ACS Nano 4, 4707–4716 (2010).

    Article  CAS  Google Scholar 

  11. Liu, K., Zhao, N. N. & Kumacheva, E. Self-assembly of inorganic nanorods. Chem. Soc. Rev. 40, 656–671 (2011).

    Article  CAS  Google Scholar 

  12. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  13. Talapin, D. V. et al. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. Adv. Mater. 13, 1868–1871 (2001).

    Article  CAS  Google Scholar 

  14. Shevchenko, E. V., Kortright, J. B., Talapin, D. V., Aloni, S. & Alivisatos, A. P. Quasi-ternary nanoparticle superlattices through nanoparticle design. Adv. Mater. 19, 4183–4188 (2007).

    Article  CAS  Google Scholar 

  15. Chen, Z. & O’Brien, S. Structure direction of II–VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2, 1219–1229 (2008).

    Article  CAS  Google Scholar 

  16. Evers, W. H., Friedrich, H., Filion, L., Dijkstra, M. & Vanmaekelbergh, D. Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography. Angew. Chem. Int. Ed. 48, 9655–9657 (2009).

    Article  CAS  Google Scholar 

  17. Dong, A. G., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  18. Talapin, D. V. et al. CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 126, 12984–12988 (2004).

    Article  CAS  Google Scholar 

  19. Evers, W. H. et al. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 10, 4235–4241 (2010).

    Article  CAS  Google Scholar 

  20. Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: Temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).

    Article  CAS  Google Scholar 

  21. Blaak, R., Mulder, B. M. & Frenkel, D. Cubatic phase for tetrapods. J. Chem. Phys. 120, 5486–5492 (2004).

    CAS  Google Scholar 

  22. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  23. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  24. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  25. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    Article  CAS  Google Scholar 

  26. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  27. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: The road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    Article  CAS  Google Scholar 

  28. Li, F., Yoo, W. C., Beernink, M. B. & Stein, A. Site-specific functionalization of anisotropic nanoparticles: From colloidal atoms to colloidal molecules. J. Am. Chem. Soc. 131, 18548–18555 (2009).

    Article  CAS  Google Scholar 

  29. Podsiadlo, P. et al. LBL assembled laminates with hierarchical organization from nano- to microscale: High-toughness nanomaterials and deformation imaging. ACS Nano 3, 1564–1572 (2009).

    Article  CAS  Google Scholar 

  30. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  31. Deka, S. et al. Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via ‘one-pot’ cation exchange and seeded growth. Nano Lett. 10, 3770–3776 (2010).

    Article  CAS  Google Scholar 

  32. Orgel, J., Irving, T. C., Miller, A. & Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl Acad. Sci. USA 103, 9001–9005 (2006).

    Article  CAS  Google Scholar 

  33. Son, D. H., Hughes, S. M., Yin, Y. D. & Alivisatos, A. P. Cation exchange reactions-in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Union through the FP7 starting ERC Grant NANO-ARCH (Contract Number 240111). M.D. acknowledges financial support by a ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek’ NWO Vici Grant, and R.v.R. by the Utrecht University High Potential Programme.

Author information

Authors and Affiliations

Authors

Contributions

K.M. performed the synthesis of the octapods and optimized the procedures for assembling. D.D. performed DLS measurements and cation exchanged reactions. G.B. performed cryo-STEM experiments, STEM tomographic reconstruction of the chain, and discussed modelling. S.M. imaged all samples with SEM-EDS and had the idea of plasma treatment. R.B. performed EFTEM on welded chains and STEM tomographic acquisitions on single octapods. J.d.G., M.D. and R.v.R. performed all the simulations and discussed modelling. L.C. performed the indentation measurements. L.M. and R.C. initiated the work, had the idea of hierarchical assembling, and discussed modelling.

Corresponding authors

Correspondence to Karol Miszta, Joost de Graaf, Giovanni Bertoni or Liberato Manna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1892 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miszta, K., de Graaf, J., Bertoni, G. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Mater 10, 872–876 (2011). https://doi.org/10.1038/nmat3121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing