Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A micromechanical model to predict the flow of soft particle glasses

Subjects

Abstract

Soft particle glasses form a broad family of materials made of deformable particles, as diverse as microgels1, emulsion droplets2, star polymers3, block copolymer micelles and proteins4, which are jammed at volume fractions where they are in contact and interact via soft elastic repulsions. Despite a great variety of particle elasticity, soft glasses have many generic features in common. They behave like weak elastic solids at rest but flow very much like liquids above the yield stress. This unique feature is exploited to process high-performance coatings, solid inks, ceramic pastes, textured food and personal care products. Much of the understanding of these materials at volume fractions relevant in applications is empirical, and a theory connecting macroscopic flow behaviour to microstructure and particle properties remains a formidable challenge. Here we propose a micromechanical three-dimensional model that quantitatively predicts the nonlinear rheology of soft particle glasses. The shear stress and the normal stress differences depend on both the dynamic pair distribution function and the solvent-mediated EHD interactions among the deformed particles. The predictions, which have no adjustable parameters, are successfully validated with experiments on concentrated emulsions and polyelectrolyte microgel pastes, highlighting the universality of the flow properties of soft glasses. These results provide a framework for designing new soft additives with a desired rheological response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and interactions of a model soft glass.
Figure 2: Computed shear stress and first and second normal stress differences of model soft glasses.
Figure 3: Microstructure of sheared soft particle glasses.
Figure 4: Universal constitutive laws for shear stress and normal stress differences from simulated data.
Figure 5: Universal scaling of shear stress and first normal stress difference experimental data.

Similar content being viewed by others

References

  1. Mattsson, J. et al. Soft colloids make strong glasses. Nature 462, 83–86 (2009).

    Article  CAS  Google Scholar 

  2. Mason, T. G., Bibette, J. & Weitz, D. A. Elasticity of compressed emulsions. Phys. Rev. Lett. 75, 2051–2054 (1995).

    Article  CAS  Google Scholar 

  3. Mayer, C. et al. Asymmetric caging in soft colloidal mixtures. Nature Mater. 7, 780–784 (2008).

    Article  CAS  Google Scholar 

  4. Zhoua, E. H. et al. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc. Natl Acad. Sci. USA 106, 10632–10637 (2009).

    Article  Google Scholar 

  5. Meeker, S. P., Bonnecaze, R. T. & Cloitre, M. Slip and flow in soft particle pastes. Phys. Rev. Lett. 92, 198302 (2004).

    Article  Google Scholar 

  6. Liu, K. K., Williams, D. R. & Briscoe, B. J. The large deformation of a single micro-elastomeric sphere. J. Phys. D. 31, 294–303 (1998).

    Article  CAS  Google Scholar 

  7. Seth, J., Cloitre, M. & Bonnecaze, R. T. Elastic properties of soft particle pastes. J. Rheol. 50, 353–376 (2006).

    Article  CAS  Google Scholar 

  8. Zhang, Z. et al. Thermal vestige of the zero-temperature jamming transition. Nature 459, 230–233 (2009).

    Article  CAS  Google Scholar 

  9. Seth, J. R. On the Rheology of Dense Pastes of Soft Particle PhD thesis, Univ. Texas (2008).

  10. Tighe, B. P., Wodhuis, E., Remmers, J. J. C., van Saarloos, W. & van Hecke, M. Model for the scaling of stresses and fluctuations in flows near jamming. Phys. Rev. Lett. 105, 088303 (2010).

    Article  Google Scholar 

  11. Nordstrom, K. N. et al. Microfluidic rheology of soft colloids above and below jamming. Phys. Rev. Lett. 105, 175701 (2010).

    Article  CAS  Google Scholar 

  12. Princen, H. M. & Kiss, A. D. Rheology of foams and highly concentrated emulsions: IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions. J. Colloid Interface Sci. 128, 176–187 (1989).

    Article  CAS  Google Scholar 

  13. Cloitre, M., Borrega, R., Monti, F. & Leibler, L. Glassy dynamics and flow properties of soft colloidal pastes. Phys. Rev. Lett. 90, 068303 (2003).

    Article  Google Scholar 

  14. Larson, R. G. The elastic stress in film fluids. J. Rheol. 41, 365–372 (1997).

    Article  CAS  Google Scholar 

  15. Denkov, N. D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K. P. & Lips, A. Viscous friction in foams and concentrated emulsions under steady shear. Phys. Rev. Lett. 100, 138301 (2008).

    Article  CAS  Google Scholar 

  16. Hanley, H. J. M., Rainwater, J. C. & Hess, S. Shear-induced dependence of the liquid pair correlation function. Phys. Rev. A 36, 1795–1802 (1987).

    Article  CAS  Google Scholar 

  17. Morris, J. F. & Katyal, B. Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids 14, 1920–1937 (2002).

    Article  CAS  Google Scholar 

  18. Schosseler, F., Ilmain, F. & Candau, S. J. Structure and properties of partially neutralized poly (acry1ic acid) gels. Macromolecules 24, 225–234 (1991).

    Article  CAS  Google Scholar 

  19. Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020–2023 (1997).

    Article  CAS  Google Scholar 

  20. Fuchs, M. & Cates, M. E. Theory of nonlinear rheology and yielding of dense colloidal suspensions. Phys. Rev. Lett. 89, 248304 (2002).

    Article  Google Scholar 

  21. Brady, J. H. & Morris, J. F. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103–139 (1997).

    Article  CAS  Google Scholar 

  22. Crassous, J. J. et al. Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow. J. Chem. Phys. 128, 204902 (2008).

    Article  CAS  Google Scholar 

  23. Erwin, B., Vlassopoulos, D., Gauthier, M. & Cloitre, M. Dynamics and rheology of colloidal star polymers. Soft Matter 6, 2825–2833 (2010).

    Article  CAS  Google Scholar 

  24. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  25. Rapaport, D. C. The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  26. Larson, R. G. The Structure and Rheology of Complex Fluids (Oxford Univ. Press, 1999).

    Google Scholar 

  27. Borrega, R., Cloitre, M., Betremieux, I., Ernst, B. & Leibler, L. Concentration dependence of the low-shear viscosity of polyelectrolyte micro-networks: From hard spheres to soft microgels. Europhys. Lett. 47, 729–735 (1999).

    Article  CAS  Google Scholar 

  28. Rubinstein, M., Colby, R. H. & Dobrynin, A. V. Elastic modulus and equilibrium swelling of polyelectrolyte gels. Macromolecules 29, 398–406 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Vlassopoulos for a critical reading of the manuscript. This work was supported by the NoE European Network Sofcomp, the CNRS (PICS 4176), the Petroleum Research Fund (ACS PRF #41236-AC9), and the National Science Foundation (CBET 0854420).

Author information

Authors and Affiliations

Authors

Contributions

J.R.S, L.M. and R.T.B. conceived the model, developed the simulations and analysed the results. C.L. and M.C. conceived and conducted the experiments and analysed the results. M.C. and R.T.B. interpreted and synthesized the results and wrote the paper. J.R.S., L.M. and C.L. provided editorial comments on the paper.

Corresponding author

Correspondence to Michel Cloitre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1036 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth, J., Mohan, L., Locatelli-Champagne, C. et al. A micromechanical model to predict the flow of soft particle glasses. Nature Mater 10, 838–843 (2011). https://doi.org/10.1038/nmat3119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3119

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing