Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of nanopore shape in surface-induced crystallization


Crystallization of a molecular liquid from solution often initiates at solid–liquid interfaces1,2,3, and nucleation rates are generally believed to be enhanced by surface roughness4,5. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15–120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface–solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of polymer films with spherical nanopores by NpIL.
Figure 2: Angular nanopores on AA-co-DVB polymer films and their templates.
Figure 3: Effect of the nanopore shape in AA-co-DVB polymer films on the nucleation kinetics of aspirin: spherical pores versus hexagonal pores and square pores of the same size.
Figure 4: Angle-directed nucleation of aspirin crystals induced by angular nanopores.
Figure 5: Effect of polymer surface chemistry on the kinetics of angular nanopore-induced nucleation of aspirin: AA-co-DVB versus AM-co-DVB.


  1. Debenedetti, P. G. Metastable Liquids: Concepts and Principles (Princeton Univ. Press, 1996).

    Google Scholar 

  2. Mullin, J. W. Crystallization 4th edn (Butterworth-Heinemann, 2001).

    Google Scholar 

  3. Turnbull, D. Kinetics of heterogeneous nucleation. J. Chem. Phys. 18, 198–203 (1950).

    Article  CAS  Google Scholar 

  4. Curcio, E., Curcio, V., Di Profio, G., Fontananova, E. & Drioli, E. Energetics of protein nucleation on rough polymeric surfaces. J. Phys. Chem. B 114, 13650–13655 (2010).

    Article  CAS  Google Scholar 

  5. Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  CAS  Google Scholar 

  6. Ward, M. D. Bulk crystals to surfaces: Combining X-ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces. Chem. Rev. 101, 1697–1725 (2001).

    Article  CAS  Google Scholar 

  7. Diao, Y., Myerson, A. S., Hatton, T. A. & Trout, B. L. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 27, 5324–5334 (2011).

    Article  CAS  Google Scholar 

  8. Cacciuto, A., Auer, S. & Frenkel, D. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature 428, 404–406 (2004).

    Article  CAS  Google Scholar 

  9. Page, A. J. & Sear, R. P. Crystallization controlled by the geometry of a surface. J. Am. Chem. Soc. 131, 17550–17551 (2009).

    Article  CAS  Google Scholar 

  10. Chayen, N. E., Saridakis, E. & Sear, R. P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proc. Natl Acad. Sci. USA 103, 597–601 (2006).

    Article  CAS  Google Scholar 

  11. Diao, Y. et al. Controlled nucleation from solution using polymer microgels. J. Am. Chem. Soc. 133, 3756–3759 (2011).

    Article  CAS  Google Scholar 

  12. Ha, J. M., Wolf, J. H., Hillmyer, M. A. & Ward, M. D. Polymorph selectivity under nanoscopic confinement. J. Am. Chem. Soc. 126, 3382–3383 (2004).

    Article  CAS  Google Scholar 

  13. Hamilton, B. D., Weissbuch, I., Lahav, M., Hillmyer, M. A. & Ward, M. D. Manipulating crystal orientation in nanoscale cylindrical pores by stereochemical inhibition. J. Am. Chem. Soc. 131, 2588–2596 (2009).

    Article  CAS  Google Scholar 

  14. Jackson, C. L. & McKenna, G. B. Vitrification and crystallization of organic liquids confined to nanoscale pores. Chem. Mater. 8, 2128–2137 (1996).

    Article  CAS  Google Scholar 

  15. Maheshwari, P. et al. Effect of interfacial hydrogen bonding on the freezing/melting behavior of nanoconfined liquids. J. Phys. Chem. C 114, 4966–4972 (2010).

    Article  CAS  Google Scholar 

  16. Stewart, M. D. & Willson, C. G. Imprint materials for nanoscale devices. MRS Bull. 30, 947–951 (2005).

    Article  CAS  Google Scholar 

  17. Xia, Y. N., Gates, B., Yin, Y. D. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693–713 (2000).

    Article  CAS  Google Scholar 

  18. Trujillo, N. J., Baxamusa, S. H. & Gleason, K. K. Grafted functional polymer nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD). Chem. Mater. 21, 742–750 (2009).

    Article  CAS  Google Scholar 

  19. Savas, T. A., Schattenburg, M. L., Carter, J. M. & Smith, H. I. Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J. Vacuum Sci. Technol. B 14, 4167–4170 (1996).

    Article  CAS  Google Scholar 

  20. tenWolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  Google Scholar 

  21. Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    Article  CAS  Google Scholar 

  22. Santiso, E. E. & Trout, B. L. A general set of order parameters for molecular crystals. J. Chem. Phys. 134, 064109 (2011).

    Article  Google Scholar 

  23. Vekilov, P. G. Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des. 4, 671–685 (2004).

    Article  CAS  Google Scholar 

  24. van Meel, J. A., Sear, R. P. & Frenkel, D. Design principles for broad-spectrum protein-crystal nucleants with nanoscale pits. Phys. Rev. Lett. 105, 205501 (2010).

    Article  Google Scholar 

  25. Dey, A. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Mater. 9, 1010–1014 (2010).

    Article  CAS  Google Scholar 

Download references


We acknowledge the Novartis-MIT Center for Continuous Manufacturing for funding. We are grateful to T. Savas at MIT Research Laboratory of Electronics for fabricating the imprint mould with Si square nanopillars and to K. Gleason for use of her equipment for plasma treatment and glass silanization.

Author information

Authors and Affiliations



Y.D. designed, carried out the experiments and wrote the manuscript. B.L.T., T.A.H. and A.S.M. supervised the work, guided and revised the manuscript. T.H. synthesized and characterized the Fe3O4 magnetic nanoparticles and co-wrote the Supplementary Information.

Corresponding authors

Correspondence to Takuya Harada or Bernhardt L. Trout.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1082 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diao, Y., Harada, T., Myerson, A. et al. The role of nanopore shape in surface-induced crystallization. Nature Mater 10, 867–871 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing