Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer

Abstract

The development of a new methodology for visualizing and detecting gases is imperative for various applications. Here, we report a novel strategy in which gas molecules are detected by signals from a reporter guest that can read out a host structural transformation. A composite between a flexible porous coordination polymer and fluorescent reporter distyrylbenzene (DSB) selectively adsorbed CO2 over other atmospheric gases. This adsorption induced a host transformation, which was accompanied by conformational variations of the included DSB. This read-out process resulted in a critical change in DSB fluorescence at a specific threshold pressure. The composite shows different fluorescence responses to CO2 and acetylene, compounds that have similar physicochemical properties. Our system showed, for the first time, that fluorescent molecules can detect gases without any chemical interaction or energy transfer. The host–guest coupled transformations play a pivotal role in converting the gas adsorption events into detectable output signals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration for detection of gas molecules by coupled structural transformations of a flexible PCP framework and a reporter molecule.
Figure 2: Introduction of reporter molecule DSB into flexible host 1, and structural and fluorescence changes of the composite by co-adsorption of CO2.
Figure 3: Selective adsorption of CO2 among atmospheric gases, and the changes of host structure, guest conformation, and fluorescence at the specific pressure of CO2.
Figure 4: Differentiation and fluorescence detection of multiple gases, CO2 and C2H2, that have similar physicochemical properties.

References

  1. Wolfbeis, O. S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 74, 2663–2677 (2002).

    Article  CAS  Google Scholar 

  2. Lee, Y-E. K. & Kopelman, R. Optical nanoparticle sensors for quantitative intracellular imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 98–110 (2009).

    Article  CAS  Google Scholar 

  3. Dansby-Sparks, R. N. et al. Fluorescent-dye-doped sol–gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Anal. Chem. 82, 593–600 (2010).

    Article  CAS  Google Scholar 

  4. Demas, J. N., DeGraff, B. A. & Coleman, P. B. Oxygen sensors based on luminescence quenching. Anal. Chem. 1, 793–800 (1999).

    Article  Google Scholar 

  5. Baratto, C. et al. Luminescence response of ZnO nanowires to gas adsorption. Sens. Actuat. B 140, 461–466 (2009).

    Article  CAS  Google Scholar 

  6. Esser, B. & Swager, T. M. Detection of ethylene gas by fluorescence turn-on of a conjugated polymer. Angew. Chem. Int. Ed. 49, 8872–8875 (2010).

    Article  CAS  Google Scholar 

  7. de Vargas-Sansalvador, I. M. P. et al. Phosphorescent sensing of carbon dioxide based on secondary inner-filter quenching. Anal. Chim. Acta 655, 66–74 (2009).

    Article  Google Scholar 

  8. Liu, Y. et al. Fluorescent chemosensor for detection and quantitation of carbon dioxide gas. J. Am. Chem. Soc. 132, 13951–13953 (2010).

    Article  CAS  Google Scholar 

  9. Gerasimchuk, N., Esaulenko, A. N., Dalley, K. N. & Moore, C. 2-Cyano-2-isonitrosoacetamide and its Ag(I) complexes. Silver(I) cyanoximateas a non-electric gas sensor. Dalton Trans. 39, 749–764 (2010).

    Article  CAS  Google Scholar 

  10. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  11. Kitagawa, S., Kitaura, R. & Noro, S-i. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  12. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    Article  CAS  Google Scholar 

  13. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  14. Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    Article  CAS  Google Scholar 

  15. Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    Article  CAS  Google Scholar 

  16. Chen, B. L. et al. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 48, 500–503 (2009).

    Article  CAS  Google Scholar 

  17. Zacher, D., Shekhah, O., Wöll, C. & Fischer, R. A. Thin films of metal-organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    Article  CAS  Google Scholar 

  18. McKinlay, A. C. et al. BioMOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 6260–6266 (2010).

    Article  CAS  Google Scholar 

  19. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  Google Scholar 

  20. Xie, Z., Ma, L., deKrafft, K. E., Jin, A. & Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 132, 922–923 (2010).

    Article  CAS  Google Scholar 

  21. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  Google Scholar 

  22. Sato, H., Matsuda, R., Sugimoto, K., Takata, M. & Kitagawa, S. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nature Mater. 9, 661–666 (2010).

    Article  CAS  Google Scholar 

  23. Meek, S. T., Greathouse, J. A. & Allendorf, M. D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011).

    Article  CAS  Google Scholar 

  24. Choi, H. J., Dincă, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).

    Article  CAS  Google Scholar 

  25. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  26. Li, J-R., Kuppler, R. J. & Zhou, H-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  27. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  Google Scholar 

  28. Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y. & Férey, G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Ed. 45, 7751–7754 (2006).

    Article  CAS  Google Scholar 

  29. Oelkrug, D. et al. Towards highly luminescent phenylene vinylene films. Synth. Met. 83, 231–237 (1996).

    Article  CAS  Google Scholar 

  30. Oelkrug, D. et al. Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J. Phys. Chem. B 102, 1902–1907 (1998).

    Article  CAS  Google Scholar 

  31. Gierschner, J. et al. Solid-state optical properties of linear polyconjugated molecules: π-stack contra herringbone. J. Chem. Phys. 123, 144914 (2005).

    Article  Google Scholar 

  32. Dybtsev, D. N., Chun, H. & Kim, K. Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033–5036 (2004).

    Article  CAS  Google Scholar 

  33. Müller, M., Devaux, A., Yang, C-H., De Cola, L. & Fischer, R. A. Highly emissive metal-organic framework composites by host-guest chemistry. Photochem. Photobiol. Sci. 9, 846–853 (2010).

    Article  Google Scholar 

  34. Furuya, K., Kawato, K., Yokoyama, H., Sakamoto, A. & Tasumi, M. Molecular distortion of trans-stilbene and the Raman intensity of the in-phase CH out-of-plane wag of the central CH=CH group. J. Phys. Chem. A 107, 8251–8258 (2003).

    Article  CAS  Google Scholar 

  35. Kasha, M., Rawls, H. R. & El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    Article  CAS  Google Scholar 

  36. An, B-K., Kwon, S-K., Jung, S-D. & Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 124, 14410–14415 (2002).

    Article  CAS  Google Scholar 

  37. Choi, H-S. & Suh, M. P. Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew. Chem. Int. Ed. 48, 6865–6869 (2009).

    Article  CAS  Google Scholar 

  38. Kanoh, H. et al. Elastic layer-structured metal organic frameworks (ELMS). J. Colloid Interface Sci. 334, 1–7 (2009).

    Article  CAS  Google Scholar 

  39. Nakagawa, K. et al. Enhanced selectivity of CO2 from a ternary gas mixture in an interdigitated porous framework. Chem. Commun. 46, 4258–4260 (2010).

    Article  CAS  Google Scholar 

  40. Swiatkowski, G., Menzel, R. & Rapp, W. Hindrance of the rotational relaxation in the excited singlet-state of biphenyl and para-terphenyl in cooled solutions by methyl substituents. J. Lumin. 37, 183–189 (1987).

    Article  CAS  Google Scholar 

  41. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  42. Samsonenko, D. G. et al. Microporous magnesium and manganese formates for acetylene storage and separation. Chem. Asian J. 2, 484–488 (2007).

    Article  CAS  Google Scholar 

  43. Zhang, J-P. & Kitagawa, S. Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3′,5,5′-tetrametyl-4,4′-bipyrazolate. J. Am. Chem. Soc. 130, 907–917 (2008).

    Article  CAS  Google Scholar 

  44. Fischer, M., Hoffmann, F. & Fröba, M. New microporous materials for acetylene storage and C2H2/CO2 separation: Insights from molecular simulations. ChemPhysChem 11, 2220–2229 (2010).

    Article  CAS  Google Scholar 

  45. Yanai, N. et al. End-functionalization of a vinylidene fluoride oligomer in coordination nanochannels. J. Mater. Chem. 21, 8021–8025 (2011).

    Article  CAS  Google Scholar 

  46. Löwe, C. & Weder, C. Oligo(p-phenylene vinylene) excimers as molecular probes: Deformation-induced color changes in photoluminescent polymer blends. Adv. Mater. 14, 1625–1629 (2002).

    Article  Google Scholar 

  47. Mutai, T., Satou, H. & Araki, K. Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nature Mater. 4, 685–687 (2005).

    Article  CAS  Google Scholar 

  48. Hong, Y. N., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 4332–4353 (2009).

  49. van Hutten, P. F., Krasnikov, V. V., Brouwer, H-J. & Hadziioannou, G. Excimer luminescence from single crystals and films of a cyano-substituted phenylene-vinylene model compound. Chem. Phys. 241, 139–154 (1999).

    Article  CAS  Google Scholar 

  50. Campbell, T. W. & Mcdonald, R. N. Synthesis of hydrocarbon derivatives by the Wittig synthesis. I. Distyrylbenzenes. J. Org. Chem. 24, 1246–1251 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Murata Science Foundation, ERATO-JST, a Grant-in-Aid for Young Scientists (A), and a Grant-in-Aid for Scientific Research on Innovative Area ‘Emergence in Chemistry’ from MEXT. The synchrotron radiation experiments were carried out at BL02B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal no. 2009B1320).

Author information

Authors and Affiliations

Authors

Contributions

N.Y., K.K., and T.U. designed and carried out the experiments. Y.H. performed the density functional calculations. H.S. and R.M. performed in-situ infrared and Raman measurements. Y.K. and M.T. assisted with the in situ synchrotron XRPD measurements and carried out the Le Bail fitting analysis of the XRPD data. M.M. contributed 2H NMR measurements. N.Y., K.K., T.U., and S.K. wrote the manuscript.

Corresponding authors

Correspondence to Takashi Uemura or Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2384 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yanai, N., Kitayama, K., Hijikata, Y. et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Mater 10, 787–793 (2011). https://doi.org/10.1038/nmat3104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing