Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-range spin Seebeck effect and acoustic spin pumping


Imagine that a metallic wire is attached to a part of a large insulator, which itself exhibits no magnetization. It seems impossible for electrons in the wire to register where the wire is positioned on the insulator. Here we found that, using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate, electrons in the wire recognize their position on the sapphire. Under a temperature gradient in the sapphire, surprisingly, the voltage generated in the Pt layer is shown to reflect the wire position, although the wire is isolated both electrically and magnetically. This non-local voltage is due to the coupling of spins and phonons: the only possible carrier of information in this system. We demonstrate this coupling by directly injecting sound waves, which realizes the acoustic spin pumping. Our finding provides a persuasive answer to the long-range nature of the spin Seebeck effect1,2,3,4,5,6,7,8, and it opens the door to ‘acoustic spintronics’ in which sound waves are exploited for constructing spin-based devices.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concept of the acoustic SSE.
Figure 2: Voltage measurement under temperature gradient.
Figure 3: Wire-position dependence.
Figure 4: Acoustic spin pumping.


  1. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    CAS  Article  Google Scholar 

  2. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  3. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    CAS  Article  Google Scholar 

  4. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    CAS  Article  Google Scholar 

  5. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  Google Scholar 

  6. Adachi, H. et al. Gigantic enhancement of spin Seebeck effect by phonon drag. Appl. Phys. Lett. 97, 252506 (2010).

    Article  Google Scholar 

  7. Adachi, H., Ohe, J., Takahashi, S. & Maekawa, S. Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Phys. Rev. B 83, 094410 (2011).

    Article  Google Scholar 

  8. Jaworski, C. M. et al. Spin-Seebeck effect: A phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011).

    CAS  Article  Google Scholar 

  9. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  10. Takahashi, S. & Maekawa, S. Spin current in metals and superconductors. J. Phys. Soc. Jpn 77, 031009 (2008).

    Article  Google Scholar 

  11. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS  Article  Google Scholar 

  12. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    CAS  Article  Google Scholar 

  13. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS  Article  Google Scholar 

  14. Žutć, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  15. Maekawa, S. (ed.) Concepts in Spin Electronics (Oxford Univ. Press, 2006).

  16. Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. (eds) Spin Caloritronics, Special Issue of Solid State Communications (Elsevier, 2010).

  17. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  18. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Article  Google Scholar 

  19. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    CAS  Article  Google Scholar 

  20. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater. 7, 125–129 (2008).

    CAS  Article  Google Scholar 

  21. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    CAS  Article  Google Scholar 

  22. Ando, K. et al. Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109, 103913 (2011).

    Article  Google Scholar 

  23. Bass, J. & Pratt, W. P. Jr Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: An experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article  Google Scholar 

  24. Callen, H. B. The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys. Rev. 73, 1349–1358 (1948).

    CAS  Article  Google Scholar 

  25. Hillebrands, B. et al. Evidence for the existence of guided longitudinal acoustic phonons in ZnSe films on GaAs. Phys. Rev. Lett. 60, 832–835 (1988).

    CAS  Article  Google Scholar 

  26. Landau, L. D. & Lifshitz, E. M. Statistical Physics 3rd edn (Pergamon, 1980).

    Google Scholar 

  27. Kuttruff, H. (ed.) Acoustics: An Introduction (Taylor & Francis, 2007).

  28. Maekawa, S. & Tachiki, M. Surface acoustic attenuation due to surface spin wave in ferro- and antiferromagnets. AIP Conf. Proc. 29, 542–543 (1976).

    CAS  Article  Google Scholar 

  29. Ganguly, A. K., Davis, K. L., Webb, D. C. & Vittoria, C. Magnetoelastic surface waves in a magnetic film-piezoelectric substrate configuration. J. Appl. Phys. 47, 2696–2704 (1976).

    CAS  Article  Google Scholar 

  30. Weiler, M. et al. Elastically driven ferromagnetic resonance in nickel thin films. Phys. Rev. Lett. 106, 117601 (2011).

    CAS  Article  Google Scholar 

Download references


The authors thank G. E. W. Bauer, J. Xiao, J. P. Heremans, R. C. Myers, J. Sinova, B. J. van Wees and T. Ono for valuable discussions. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area ‘Creation and Control of Spin Current’ (19048009, 19048028), a Grant-in-Aid for Scientific Research A (21244058), the global COE for the ‘Materials Integration International Centre of Education and Research’, all from MEXT, Japan, a Grant for Industrial Technology Research from NEDO, Japan, and Fundamental Research Grants from CREST-JST ‘Creation of Nanosystems with Novel Functions through Process Integration’, PRESTO-JST, TRF and TUIAREO, Japan.

Author information

Authors and Affiliations



K.U. designed the experiments, fabricated the samples, collected all of the data and carried out analysis of the data. E.S. planned and supervised the study. T.A., T.O. and M.T. supported the experiments. H.A. and S.M. developed the explanation of the experiments. K.U., H.A., B.H. and E.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to E. Saitoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 728 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uchida, K., Adachi, H., An, T. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nature Mater 10, 737–741 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing