Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface-induced room-temperature multiferroicity in BaTiO3

Abstract

Multiferroic materials possess two or more ferroic orders but have not been exploited in devices owing to the scarcity of room-temperature examples. Those that are ferromagnetic and ferroelectric have potential applications in multi-state data storage if the ferroic orders switch independently, or in electric-field controlled spintronics if the magnetoelectric coupling is strong. Future applications could also exploit toroidal moments and optical effects that arise from the simultaneous breaking of time-reversal and space-inversion symmetries. Here, we use soft X-ray resonant magnetic scattering and piezoresponse force microscopy to reveal that, at the interface with Fe or Co, ultrathin films of the archetypal ferroelectric BaTiO3 simultaneously possess a magnetization and a polarization that are both spontaneous and hysteretic at room temperature. Ab initio calculations of realistic interface structures provide insight into the origin of the induced moments and bring support to this new approach for creating room-temperature multiferroics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of ferroelectric polarization direction on TMR in Fe/BTO/LSMO and Co/BTO/LSMO junctions.
Figure 2: Element specific magnetic signals at Fe/BTO and Co/BTO interfaces.
Figure 3: Evidence for room-temperature multiferroicity.
Figure 4: Interface structure analysis.

Similar content being viewed by others

References

  1. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  2. Cheong, S-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  3. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  4. Béa, H., Gajek, M., Bibes, M. & Barthélémy, A. Spintronics with multiferroics. J. Phys.: Condens. Matter 20, 434221 (2008).

    Google Scholar 

  5. Bibes, M., Villlegas, J. E. & Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5–84 (2011).

    Article  CAS  Google Scholar 

  6. Binek, C. & Doudin, B. Magnetoelectronics with magnetoelectrics. J. Phys.: Condens. Matter. 17, L39–L44 (2005).

    CAS  Google Scholar 

  7. Chu, Y-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  8. Bibes, M. & Barthélémy, A. Towards a magnetoelectric memory. Nature Mater. 7, 425–426 (2008).

    Article  CAS  Google Scholar 

  9. Wood, V. E & Austin, A. E. in Magnetoelectric Interaction Phenomena in Crystals (eds Freeman, A. J. & Schmid, H.) (Gordon and. Breach, 1975).

    Google Scholar 

  10. Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nature Mater. 6, 296–302 (2007).

    Article  CAS  Google Scholar 

  11. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  12. Sawada, K. & Nagaosa, N. Optical magnetoelectric effect in multiferroic materials: Evidence for a Lorentz force acting on a ray of light. Phys. Rev. Lett. 95, 237402 (2005).

    Article  Google Scholar 

  13. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  14. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).

    Article  CAS  Google Scholar 

  15. Hu, J., Li, J. & Nan, C-W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062–1087 (2011).

    Article  Google Scholar 

  16. Duan, C-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Article  Google Scholar 

  17. Fechner, M. et al. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys. Rev. B 78, 212406 (2008).

    Article  Google Scholar 

  18. Lee, J., Sai, N., Cai, T., Niu, Q. & Demkov, A. A. Interfacial magnetoelectric coupling in tricomponent superlattices. Phys. Rev. B 81, 144425 (2010).

    Article  Google Scholar 

  19. Kitagawa, Y. et al. Low-field magnetoelectric effect at room temperature. Nature Mater. 9, 797–802 (2010).

    Article  CAS  Google Scholar 

  20. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  21. Garcia, V. et al. Ferroelectric control of spin-polarization. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  22. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

    Article  CAS  Google Scholar 

  23. Abrudan, R. et al. Structural and magnetic properties of epitaxial Fe/CoO bilayers on Ag(001). Phys. Rev. B 77, 014411 (2008).

    Article  Google Scholar 

  24. Noguès, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    Article  Google Scholar 

  25. Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  26. Bowen, M. et al. Nearly total spin-polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl. Phys. Lett. 82, 233–235 (2003).

    Article  CAS  Google Scholar 

  27. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Article  Google Scholar 

  28. Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Article  Google Scholar 

  29. Cao, D., Cai, M-Q., Hu, W. Y. & Xu, C-M. Magnetoelectric effect and critical thickness for ferroelectricity in Co/BaTiO3/Co multiferroic tunnel junctions. J. Appl. Phys. 109, 114107 (2011).

    Article  Google Scholar 

  30. de Teresa, J. M. et al. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).

    Article  CAS  Google Scholar 

  31. Valencia, S. et al. B. X-ray magnetic circular dichroism in reflection geometry: A tool for investigating surface magnetism in thin films. J. Appl. Phys. 104, 023903 (2008).

    Article  Google Scholar 

  32. Zhuravlev, M. Y., Vedyayev, A. V. & Tsymbal, E. Y. Interlayer exchange coupling across a ferroelectric barrier. J. Phys.: Condens. Matter. 22, 352203 (2010).

    Google Scholar 

  33. Gonze, X. et al. A brief introduction to the ABINIT software package. Z. Kristallogr. 220, 558–562 (2005).

    CAS  Google Scholar 

  34. Gonze, X. et al. ABINIT: First-principles approach of materials and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009).

    Article  CAS  Google Scholar 

  35. Shao, Y. et al. Quantification of the Ti oxidation state in BaTi1−xNbxO3 compounds. Ultramicroscopy 110, 1014–1019 (2010).

    Article  CAS  Google Scholar 

  36. Garcia-Barriocanal, J. et al. Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. Nature Commun. 1, 82 (2010).

    Article  CAS  Google Scholar 

  37. Fujii, T. et al. Large magnetic polarization of Ti4+ ions in FeTiO3 . J. Magn. Magn. Mater. 310, e555–e557 (2006).

    Article  Google Scholar 

  38. Brice-Profeta, S. Etude de l’Ordre Chimique et Magnétique d’Oxydes Spinelles de Taille Nanométrique par Dichroïsme Magnétique Circulaire des Rayons X. PhD thesis, Univ. Pierre et Marie Curie (2004).

  39. Yu, P. et al. Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010).

    Article  CAS  Google Scholar 

  40. Sefrioui, Z. et al. All-manganite tunnel junctions with interface-induced barrier magnetism. Adv. Mater. 22, 5029–5034 (2010).

    Article  CAS  Google Scholar 

  41. Jang, F. et al. Eight logic states of tunneling magnetoelectroresistance in multiferroic tunnel junctions. J. Appl. Phys. 102, 044504 (2007).

    Article  Google Scholar 

  42. Wang, J. & Li, Z. Y. Multiple switching of spin polarization injected into a semiconductor by a multiferroic tunneling junction. J. Appl. Phys. 104, 033908 (2008).

    Article  Google Scholar 

  43. Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys.: Condens. Matter 20, 434203 (2008).

    Google Scholar 

  44. Oleinik, I. I., Tsymbal, E. Y. & Pettifor, D. G. Atomic and electronic structure of Co/SrTiO3/Co magnetic tunnel junctions. Phys. Rev. B. 65, 020401(R) (2001).

    Article  Google Scholar 

  45. Bowen, M. et al. Absence of induced moment in magnetic tunnel junction barriers. Phys. Rev. B 73, 012405 (2006).

    Article  Google Scholar 

  46. Bouzehouane, K. et al. Nanolithography based on real-time electrically controlled indentation with an atomic force microscope for nanocontact elaboration. Nano Lett. 3, 1599–1602 (2003).

    Article  CAS  Google Scholar 

  47. Houzé, F., Meyer, R., Schneegans, O. & Boyer, L. Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes. Appl. Phys. Lett. 69, 1975–1977 (1996).

    Article  Google Scholar 

  48. Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Article  Google Scholar 

  49. Grabis, J., Nefedov, A. & Zabel, H. Diffractometer for soft x-ray resonant magnetic scattering. Rev. Sci. Instrum. 74, 4048–4051 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by France-UK PHC Alliance program, the Triangle de la Physique contract ‘OXISPINTRONICS’, UK EPSRC EP/E026206/I, Region Île-de-France in the framework of C’Nano IdF, the European ESTEEM and the METSA networks and the European Research Council Advanced grant project ‘FEMMES’ (no. 267579). The ALICE diffractometer is funded through the BMBF Contract No. 05K10PC2. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226716. X.M. acknowledges support from a Herschel–Smith fellowship. We also thank N. Reyren, V. Cros and F. Petroff for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.V., V.G., A.B. and M.B. designed the experiments. X.M., N.D.M., R.O.C., C.D., K.B. and S.F. were responsible for the preparation and characterization of the samples. A.C., V.G., K.B., A.B. and M.B. performed the magnetotransport measurements and data analysis. S.V., A.C., V.G., A.Gaupp, L.B., R.A. and F.R. performed the XRMS, XAS and XMCD measurements and treated and interpreted the data. A.C., V.G., K.B. and S.F. carried out the PFM characterization. L.B. and A.Gloter performed the STEM-HAADF studies, the EELS measurements and interpreted the data. L.B., A.Gloter and A.Z. carried out the first-principles calculations and interpreted the results. S.V. and M.B. wrote the manuscript. All authors contributed to the manuscript and the interpretation of the data.

Corresponding author

Correspondence to M. Bibes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, S., Crassous, A., Bocher, L. et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nature Mater 10, 753–758 (2011). https://doi.org/10.1038/nmat3098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing