Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure


Li-ion batteries have empowered consumer electronics and are now seen as the best choice to propel forward the development of eco-friendly (hybrid) electric vehicles. To enhance the energy density, an intensive search has been made for new polyanionic compounds that have a higher potential for the Fe2+/Fe3+ redox couple. Herein we push this potential to 3.90 V in a new polyanionic material that crystallizes in the triplite structure by substituting as little as 5 atomic per cent of Mn for Fe in Li(Fe1−δMnδ)SO4F. Not only is this the highest voltage reported so far for the Fe2+/Fe3+ redox couple, exceeding that of LiFePO4 by 450 mV, but this new triplite phase is capable of reversibly releasing and reinserting 0.7–0.8 Li ions with a volume change of 0.6% (compared with 7 and 10% for LiFePO4 and LiFeSO4F respectively), to give a capacity of ~125 mA h g−1.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and diffraction patterns of the tavorite and triplite phases.
Figure 2: Structural changes on Mn substitution.
Figure 3: Voltage–composition curves for the tavorite and triplite phases.
Figure 4: Changes in electrochemistry with Mn substitution.
Figure 5: Synchrotron XRD Rietveld refinement of the chemically oxidized Li0.25(Fe0.8Mn0.2)SO4F sample.
Figure 6: Structural relationship between the tavorite and triplite phases.


  1. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Tarascon, J-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  3. Yamada, A. et al. Lithium iron borates as high capacity battery electrodes. Adv. Mater. 22, 3583–3587 (2010).

    Article  CAS  Google Scholar 

  4. Nyten, A., Abouimrane, A., Armand, M., Gustafsson, T. & Thomas, J.O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 7, 156–160 (2005).

    Article  CAS  Google Scholar 

  5. Nishimura, S. et al. Structure of Li2FeSiO4 . J. Am. Chem. Soc. 130, 13212–13213 (2008).

    Article  CAS  Google Scholar 

  6. Nishimura, S., Makamura, M., Natsui, R. & Yamada, A. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. J. Am. Chem. Soc. 132, 13596–13597 (2010).

    Article  CAS  Google Scholar 

  7. Barker, J., Saidi, M. Y. & Swoyer, J. L. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 151, 1670–1677 (2004).

    Article  Google Scholar 

  8. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J. Electrochem. Soc. 145, 1518–1520 (1998).

    Article  CAS  Google Scholar 

  9. Recham, N. et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature Mater. 9, 68–74 (2010).

    Article  CAS  Google Scholar 

  10. Barpanda, P. et al. Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M=Co, Ni) phases fabricated by low temperature ionothermal synthesis. J. Mater. Chem. 20, 1659–1668 (2010).

    Article  CAS  Google Scholar 

  11. Rea, J. R. & Kostiner, E. The crystal structure of manganese fluorophosphate, Mn2(PO4)F. Acta Crystallogr. B 28, 2525–2529 (1972).

    Article  CAS  Google Scholar 

  12. Recham, N. et al. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater. 21, 1096–1107 (2009).

    Article  CAS  Google Scholar 

  13. Ati, M. et al. Fluorosulphate positive electrodes for Li-ion batteries made via a solid-state dry process. J. Electrochem. Soc. 157, 1007–1015 (2010).

    Article  Google Scholar 

  14. Barpanda, P. et al. Structural and electrochemical investigation of novel AMSO4F(A=Na,Li;M=Fe,Co,Ni,Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg. Chem. 49, 7401–7413 (2010).

    Article  CAS  Google Scholar 

  15. Barpanda, P. et al. LiZnSO4F made in an ionic liquid: A new ceramic electrolyte composite for solid-state Li-batteries. Angew. Chem. Int. Ed. 50, 2526–2531 (2010).

    Article  Google Scholar 

  16. Ati, M. et al. Fluorosulfate positive electrode materials made with polymers as reacting media. Electrochem. Solid-State. Lett. 13, 150–153 (2010).

    Article  Google Scholar 

  17. Rodrı´guez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  Google Scholar 

  18. Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta. Cryst B25, 925 (1969).

    Article  Google Scholar 

  19. Tarantino, S. C., Ghigna, P., McCammon, C., Amantea, R. & Carpenter, M. A. Local structure properties of (Mn,Fe)Nb2O6 from Mössbauer and X-ray absorption spectroscopy. Acta Cryst. B 61, 250–257 (2005).

    Article  Google Scholar 

  20. Hanaor, D. & Sorrell, C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 1–20 (2011).

    Article  Google Scholar 

  21. Frayret, C. et al. LiMSO4F (M=Fe, Co, and Ni): Promising new positive electrode materials through the DFT microscope. Phys. Chem. Chem. Phys. 12, 15512–15522 (2010).

    Article  CAS  Google Scholar 

  22. Cai, Y. et al. First-principles calculations on the LiMSO4F/MSO4F (M=Fe, Co, and Ni) systems. J. Phys. Chem. C 115, 7032–7037 (2011).

    Article  CAS  Google Scholar 

  23. Ramzan, M., Lebegue, S., Kang, T. W. & Ahuja, R. Hybrid density functional calculations and molecular dynamics study of lithium fluorosulphate, a cathode material for lithium-ion batteries. J. Phys. Chem. C 115, 2600–2603.

  24. Tripathi, R., Gardiner, G. R., Islam, M. S. & Nazar, L. F. Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem. Mater. 23, 2278–2284 (2011).

    Article  CAS  Google Scholar 

  25. Liu, Z. & Huang, X. Structural, electronic, and Li diffusion properties of LiFeSO4F. Solid State Ion. 181, 57–61 (2010).

    Google Scholar 

  26. Sirisopanaporn, C., Masquelier, C., Bruce, P., Armstrong, A. & Dominko, R. Dependence of Li2FeSiO4 electrochemistry on structure. J. Am. Chem. Soc. 133, 1263–1265 (2011).

    Article  CAS  Google Scholar 

  27. Favre-Nicolin, V. & Cerny, R. Fox, ‘free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction. J. Appl. Cryst. 35, 734–743 (2002).

    Article  CAS  Google Scholar 

  28. Varret, F. & Teillet, J. Unpublished Mosfit Program (Universite du Maine, 1976).

    Google Scholar 

  29. Dent, A. J. B18: A core XAS spectroscopy beamline for diamond. J. Phys. Conf. Ser. 190, 012039 (2009).

    Article  Google Scholar 

  30. Webb, S. M. SIXPack: A graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115, 1011–1014 (2005).

    Article  CAS  Google Scholar 

  31. Leriche, J. B. et al. An electrochemical cell for operando study of lithium batteries using synchrotron radiation. J. Electrochem. Soc. 157, A606–A610 (2010).

    Article  CAS  Google Scholar 

Download references


Many discussions with M. Armand, N. Recham, C. Delacourt, C. Masquelier, D. Larcher, G. Férey, Y. Chabre, C. Frayret and D.W. Murphy are gratefully acknowledged. We thank C. Davoisne for the TEM images and ALISTORE-ERI for sponsoring this research. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The EXAFS measurements were carried out with the support of the Diamond Light Source and we gratefully acknowledge G. Cibin for help with running the X-ray absorption spectroscopy experiments as well as E. J. Schofield and A. V. Chadwick for discussions in analysing the XANES data.

Author information

Authors and Affiliations



P.B., M.A. and J-M.T. carried out the synthesis, the electrochemical work and designed the research approach; B.C.M., G.R. and J-N.C. analysed the crystal structure and diffraction patterns; M.T.S. and J-C.J. collected the Mössbauer measurements; B.C.M. and S.A.C. collected and analysed the EXAFS measurements; M-L.D. conducted the DFT calculations and developed the theoretical framework; B.C.M., G.R. and J-M.T. wrote the manuscript and all authors discussed the experiments and final manuscript.

Corresponding author

Correspondence to J-M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5139 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barpanda, P., Ati, M., Melot, B. et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Mater 10, 772–779 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing