Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing bulk electronic structure with hard X-ray angle-resolved photoemission

Abstract

Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of photon wave vector on wave vector conservation, and assessed methods for the removal of phonon-associated smearing of features and photoelectron diffraction effects. The experimental results are compared to free-electron final-state model calculations and to more precise one-step photoemission theory including matrix element effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hard X-ray angle-resolved photoemission (HARPES) measurements and theory for W(110) at a photon energy of 5,956 eV.
Figure 2: HARPES measurements and theory for GaAs(001) at a photon energy of 3,238 eV.
Figure 3: First-principles local density calculations of the GaAs band structure.

Similar content being viewed by others

References

  1. Himpsel, F. J. Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1–51 (1983).

    Article  CAS  Google Scholar 

  2. Hüfner, S. Photoelectron Spectroscopy: Principles and Applications 2nd edn (Springer, 1996).

    Book  Google Scholar 

  3. Damascelli, A., Hussain, Z. & Shen, Z-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  4. Christensen, N. E. & Feuerbacher, B. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra. Phys. Rev. B 10, 2349–2372 (1974).

    Article  CAS  Google Scholar 

  5. Feydt, J., Elbe, A., Engelhard, H. & Meister, G. Photoemission from bulk bands along the surface normal of W(110). Phys. Rev. B 58, 14007–14012 (1998).

    Article  CAS  Google Scholar 

  6. Hussain, Z., Fadley, C. S., Kono, S. & Wagner, L. F. Temperature-dependent angle-resolved X-ray photoemission study of the valence bands of single-crystal tungsten: Evidence for direct transitions and phonon effects. Phys. Rev. B 22, 3750–3766 (1980).

    Article  CAS  Google Scholar 

  7. Emtsev, K. V., Speck, F., Seyller, T. & Ley, L. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).

    Article  Google Scholar 

  8. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  9. Tamai, A. et al. Fermi surface and van Hove singularities in the itinerant metamagnet Sr3Ru2O7 . Phys. Rev. Lett. 101, 026407 (2008).

    Article  CAS  Google Scholar 

  10. Claesson, T. et al. Angle resolved photoemission from Nd1.85Ce0.15CuO4 using high energy photons: A Fermi surface investigation. Phys. Rev. Lett. 93, 136402 (2004).

    Article  CAS  Google Scholar 

  11. Venturini, F., Minár, J., Braun, J., Ebert, H. & Brookes, N. B. Soft x-ray angle-resolved photoemission spectroscopy on Ag(001): Band mapping, photon momentum effects, and circular dichroism. Phys. Rev. B 77, 045126 (2008).

    Article  Google Scholar 

  12. Plucinski, L. et al. Band mapping in higher-energy x-ray photoemission: Phonon effects and comparison to one-step theory. Phys. Rev. B 78, 035108 (2008).

    Article  Google Scholar 

  13. Papp, C. et al. Band mapping in x-ray photoelectron spectroscopy: An experimental and theoretical study of W(110) with 1.25 keV excitation. Phys. Rev. B 84, 045433 (2011).

    Article  Google Scholar 

  14. Fadley, C. S. X-ray photoelectron spectroscopy and diffraction in the hard X-ray regime: Fundamental considerations and future possibilities. Nucl. Instrum. Methods Phys. Res. A 547, 24–41 (2005).

    Article  CAS  Google Scholar 

  15. Kobayashi, K. High-resolution hard X-ray photoelectron spectroscopy: Application of valence band and core-level spectroscopy to materials science. Nucl. Instrum. Methods Phys. Res. A 547, 98–112 (2005).

    Article  CAS  Google Scholar 

  16. Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. Surf. Interface Anal. 37, 1–14 (2005).

    Article  CAS  Google Scholar 

  17. Tanuma, S. et al. Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 eV energy range by elastic-peak electron spectroscopy. Surf. Interface Anal. 37, 833–845 (2005).

    Article  CAS  Google Scholar 

  18. Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal. 43, 689–713 (2011).

    Article  CAS  Google Scholar 

  19. Shevchik, N. J. Disorder effects in angle-resolved photoelectron spectroscopy. Phys. Rev. B 16, 3428–3442 (1977).

    Article  CAS  Google Scholar 

  20. Takata, Y. et al. Recoil effect of photoelectrons in the Fermi edge of simple metals. Phys. Rev. Lett. 101, 137601 (2008).

    Article  CAS  Google Scholar 

  21. Feuerbacher, B. & Christensen, N. E. Volume and surface photoemission from tungsten. II. Experiment. Phys. Rev. B 10, 2373–2390 (1974).

    Article  CAS  Google Scholar 

  22. Hussain, Z., Umbach, E., Barton, J. J., Tobin, J. G. & Shirley, D. A. Angle-resolved photoemission study of the valence bands of W(011) in the photon energy range 1100–1250 eV: Observation of strong direct transitions and phonon effects. Phys. Rev. B 25, 672–676 (1982).

    Article  CAS  Google Scholar 

  23. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    Article  CAS  Google Scholar 

  24. Chau, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotech. 4, 153–158 (2005).

    Article  Google Scholar 

  25. Brammertz, G. et al. GaAs on Ge for CMOS. Thin Solid Films 517, 148–151 (2008).

    Article  CAS  Google Scholar 

  26. Ye, P. D. et al. GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition. Appl. Phys. Lett. 83, 180–182 (2003).

    Article  CAS  Google Scholar 

  27. Wu, J. D., Huang, Y. S., Brammertz, G. & Tiong, K. K. Optical characterization of thin epitaxial GaAs films on Ge substrates. J. Appl. Phys. 106, 023505 (2009).

    Article  Google Scholar 

  28. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  CAS  Google Scholar 

  29. Dallera, C. et al. Looking 100 Å deep into spatially inhomogeneous dilute systems with hard X-ray photoemission. Appl. Phys. Lett. 85, 4532 (2004).

    Article  CAS  Google Scholar 

  30. Alvarez, M. A. V., Ascolani, H. & Zampieri, G. Excitation of phonons and forward focusing in X-ray photoemission from the valence band. Phys. Rev. B 54, 14703–14712 (1996).

    Article  CAS  Google Scholar 

  31. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universit. Wien, 2001).

    Google Scholar 

  32. Braun, J., Minár, J., Ebert, H., Katsnelson, M. I. & Lichtenstein, A. I. Spectral function of ferromagnetic 3d metals: A self-consistent LSDA+DMFT approach combined with the one-step model of photoemission. Phys. Rev. Lett. 97, 227601 (2006).

    Article  CAS  Google Scholar 

  33. Bachelet, G. B. & Christensen, N. E. Relativistic and core-relaxation effects on the energy bands of gallium arsenide and germanium. Phys. Rev. B 31, 879–887 (1985).

    Article  CAS  Google Scholar 

  34. Ueda, S. et al. Present status of the NIMS contract beamline BL15XU at SPring-8. AIP Conf. Proc. 1234, 403–406 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank O. D. Dubon (UC Berkeley) for providing the GaAs sample. The authors with LBNL affiliation acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract number DE-AC02-05CH11231, for salary and travel support. The measurements were performed under the approval of NIMS Beamline Station (Proposal Nos. 2008A4906, 2008B4800, 2009A4906). This work was partially supported by the Nanotechnology Network Project, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Financial support by the Deutsche Forschungsgemeinschaft (FOR 1346, EB-154/20 and MI-1327/1) and the Bundesministerium für Bildung und Forschung (05K10WMA) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.X.G., C.P., S.U. and B.B. carried out the experiments, with assistance from Y.Y. and under the supervision of K.K. and C.S.F. Data normalization and analysis were performed by C.P. and A.X.G. Free-electron final-state model calculations were performed by L.P., with assistance from C.M.S. One-step model calculations were performed by J.M., J.B. and H.E. DFT calculations were performed by E.R.Y. and W.E.P.

Corresponding author

Correspondence to A. X. Gray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 870 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, A., Papp, C., Ueda, S. et al. Probing bulk electronic structure with hard X-ray angle-resolved photoemission. Nature Mater 10, 759–764 (2011). https://doi.org/10.1038/nmat3089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing