Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube


The ability to tune the properties of graphene nanoribbons (GNRs) through modification of the nanoribbon’s width and edge structure1,2,3 widens the potential applications of graphene in electronic devices4,5,6. Although assembly of GNRs has been recently possible, current methods suffer from limited control of their atomic structure7,8,9,10,11,12,13, or require the careful organization of precursors on atomically flat surfaces under ultra-high vacuum conditions14. Here we demonstrate that a GNR can self-assemble from a random mixture of molecular precursors within a single-walled carbon nanotube, which ensures propagation of the nanoribbon in one dimension and determines its width. The sulphur-terminated dangling bonds of the GNR make these otherwise unstable nanoribbons thermodynamically viable over other forms of carbon. Electron microscopy reveals elliptical distortion of the nanotube, as well as helical twist and screw-like motion of the nanoribbon. These effects suggest novel ways of controlling the properties of these nanomaterials, such as the electronic band gap and the concentration of charge carriers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Guest molecules encapsulated within a carbon nanotube can be transformed into a 1D structure under the influence of heat or an electron beam.
Figure 2: Carbon nanotubes serve as containers and nanoreactors for molecules.
Figure 3: Structure and properties of sulphur-terminated nanoribbon.
Figure 4: Dynamic behaviour of the nanoribbon inside the nanotube.


  1. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1195 (2006).

    Article  CAS  Google Scholar 

  2. Son, Y-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  3. White, C. T. & Areshkin, D. A. Building blocks for integrated graphene circuits. Nano Lett. 7, 825–830 (2007).

    Article  CAS  Google Scholar 

  4. Yang, L., Cheol-Hwan, P., Son, Y-W, Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  Google Scholar 

  5. Wakabayashi, K. Electronic transport properties of nanographite ribbon junctions. Phys. Rev. B 64, 125428 (2001).

    Article  Google Scholar 

  6. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  Google Scholar 

  7. Datta, S. S., Strachan, D. R., Khamis, S. M. & Jonson, A. T. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).

    Article  CAS  Google Scholar 

  8. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  9. Kosynkin, D. V. et al. Longitudinal inzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–875 (2009).

    Article  CAS  Google Scholar 

  10. Jiao, L. Y., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  11. Elias, A. L. et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10, 366–372 (2009).

    Article  Google Scholar 

  12. Yang, X. Y. et al. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130, 4216–4217 (2008).

    Article  CAS  Google Scholar 

  13. Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnol. 5, 321–325 (2010).

    Article  CAS  Google Scholar 

  14. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  15. Basiuk, V.A. & Basiuk, E.V. in Chemistry of Carbon Nanotubes Vol. 3, Ch. 5 (American Scientific Publishers, 2003).

    Google Scholar 

  16. Britz, D. A., Khlobystov, A. N., Porfyrakis, K., Ardavan, A. & Briggs, G. A. D. Chemical reactions inside single-walled carbon test-tubes. Chem. Commun. 37–39 (2005).

  17. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  CAS  Google Scholar 

  18. Britz, D. A. et al. Selective host–guest interaction of single-walled carbon nanotubes with functionalised fullerenes. Chem. Commun. 176–177 (2004).

  19. Chamberlain, T. W. et al. Toward controlled spacing in one-dimensional molecular chains: Alkyl-chain-functionalized fullerenes in carbon nanotubes. J. Am. Chem. Soc. 129, 8609–8614 (2007).

    Article  CAS  Google Scholar 

  20. Gimenez-Lopez, M. C., Chuvilin, A., Kaiser, U. & Khlobystov, A. N. Functionalised endohedral fullerenes in single-walled carbon nanotubes. Chem. Commun 47, 2116–2118 (2011).

    Article  CAS  Google Scholar 

  21. Koshino, M. et al. Analysis of the reactivity and selectivity of fullerenes dimerization reactions at the atomic level. Nature Chem. 2, 117–124 (2010).

    Article  CAS  Google Scholar 

  22. Terrones, M. Electron microscopy: Visualizing fullerene chemistry. Nature Chem. 2, 82–83 (2010).

    Article  CAS  Google Scholar 

  23. Meyer, J. C. et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nature Mater. 10, 209–215 (2011).

    Article  CAS  Google Scholar 

  24. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, 1996).

    Book  Google Scholar 

  25. Goodings, E. P., Mitchard, D. A. & Owen, G. Synthesis, structure, and electrical properties of naphthacene, pentacene, and hexacene sulphides. J. Chem. Soc. Perkin Trans. 1310–1314 (1972).

  26. Briseno, A. L. et al. Hexathiapentacene: Structure, molecular packing, and thin-film transistors. J. Am. Chem. Soc. 128, 15576–15577 (2006).

    Article  CAS  Google Scholar 

  27. Klingsberg, E. Thiothiophethene no-bond resonance compounds. Quart. Rev. 23, 537–551 (1969).

    Article  CAS  Google Scholar 

  28. Son, Y-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbon. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  29. Rudberg, E., Salek, P. & Luo, Y. Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Lett. 7, 2211–2213 (2007).

    Article  CAS  Google Scholar 

  30. Hod, O., Barone, V., Peralta, J. E. & Scuseria, G. E. Enhanced half-metallicity in edge-oxidised zigzag graphene nanoribbons. Nano Lett. 7, 2295–2299 (2007).

    Article  CAS  Google Scholar 

  31. Bets, K. V. & Yakobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2, 161–166 (2009).

    Article  CAS  Google Scholar 

  32. Fan, X. et al. Atomic arrangement of iodine atoms inside single-walled carbon nanotube. Phys. Rev. Lett. 84, 4621–4624 (2000).

    Article  CAS  Google Scholar 

  33. Gunlycke, D., Li, J., Mintmire, J. W. & White, C. T. Edges bring new dimension to grapheme nanoribbons. Nano Lett. 10, 3638–3642 (2010).

    Article  CAS  Google Scholar 

Download references


This work was supported by by the DFG (German Research Foundation) and the Ministry of Science, Research and the Arts (MWK) of Baden-Württemberg in the frame of the SALVE (Sub Angstrom Low-Voltage Electron microscopy project) and by the DFG within the research project SFB 569 (U.K. and J.B.); the EPSRC (Career Acceleration Fellowship), NanoTP COST action and High Performance Computing (HPC) facility at the University of Nottingham (E.B.); the EPSRC, ESF and the Royal Society (A.N.K. and A.C.); the FP7 Marie Curie Fellowship (M.C.G-L.); and the Nottingham Nanoscience and Nanotechnology Centre (access to Raman spectrometer).

Author information

Authors and Affiliations



A.C. and J.B. carried out transmission electron microscopy experiments (Ulm University) and image analysis. E.B. and N.K. performed theoretical modelling. M.C.G-L. and T.W.C. synthesized materials. G.A.R. carried out Raman spectroscopy measurements. U.K. contributed to the development of the experimental methodology and the discussion of the results. A.N.K. proposed the chemical structure of nanoribbon and the pathway of its formation, and wrote the original manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to A. N. Khlobystov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1824 kb)

Supplementary Information

Supplementary Movie (AVI 10074 kb)

Supplementary Information

Supplementary Movie (AVI 4793 kb)

Supplementary Information

Supplementary Movie (AVI 2182 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M. et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nature Mater 10, 687–692 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing