Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A lithium superionic conductor



Batteries are a key technology in modern society1,2. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10−2 S cm−1) only at 50–80 °C, which is one order of magnitude lower than those of organic liquid electrolytes3,4,5,6,7,8. Here, we report a lithium superionic conductor, Li10GeP2S12 that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm−1 at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window)9,10,11.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lithium-ion conductivity of Li10GeP2S12.
Figure 2: Crystal structure of Li10GeP2S12.
Figure 3: Thermal evolution of ionic conductivity of the new Li10GeP2S12 phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes3,4,5,6,7,8,13,14,15,16,20,22.
Figure 4: Charge–discharge curves of an all-solid-state battery consisting of a LiCoO2 cathode, a Li10GeP2S12 electrolyte and an In metal anode.


  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  2. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  3. Inaguma, Y. et al. High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  CAS  Google Scholar 

  4. Kanno, R. & Maruyama, M. Lithium ionic conductor thio-LISICON—the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    Article  CAS  Google Scholar 

  5. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

    Article  CAS  Google Scholar 

  6. Hayashi, A., Minami, K., Mizuno, F. & Tatsumisago, M. Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses. J. Mater. Sci. 43, 1885–1889 (2008).

    Article  CAS  Google Scholar 

  7. Kondo, S., Takada, K. & Yamamura, Y. New lithium ion conductors based on Li2S–SiS2 system. Solid State Ion. 53, 1183–1186 (1992).

    Article  Google Scholar 

  8. Takada, K., Aotani, N. & Kondo, S. Electrochemical behaviors of Li+ ion conductor, Li3PO4–Li2S–SiS2 . J. Power Sources 43, 135–141 (1993).

    Article  CAS  Google Scholar 

  9. Inada, T. et al. All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON. J. Power Sources 194, 1085–1088 (2009).

    Article  CAS  Google Scholar 

  10. Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621–625 (2008).

    Article  CAS  Google Scholar 

  11. Kobayashi, T., Yamada, A. & Kanno, R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim. Acta 53, 5045–5050 (2008).

    Article  CAS  Google Scholar 

  12. Alpen, U. V., Rabenau, A. & Talat, G. H. Ionic-conductivity in Li3N single-crystals. Appl. Phys. Lett. 30, 621–623 (1977).

    Article  Google Scholar 

  13. Lapp, T., Skaarup, S. & Hooper, A. Ionic-conductivity of pure and doped Li3N. Solid State Ion. 11, 97–103 (1983).

    Article  CAS  Google Scholar 

  14. Edman, L., Ferry, A. & Doeff, M. M. Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)(n)-LiN(CF3SO2)(2). J. Mater. Res. 15, 1950–1954 (2000).

    Article  CAS  Google Scholar 

  15. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  CAS  Google Scholar 

  16. Stallworth, P. E. et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 81, 739–747 (1999).

    Article  Google Scholar 

  17. Rabenau, A. Lithium nitride and related materials—case-study of the use of modern solid-state research techniques. Solid State Ion. 6, 277–293 (1982).

    Article  CAS  Google Scholar 

  18. Garcia-Martin, S., Rojo, J. M., Tsukamoto, H., Moran, E. & Alario-Franco, M. A. Lithium-ion conductivity in the novel La1/3−xLi3xNbO3 solid solution with perovskite-related structure. Solid State Ion. 116, 11–18 (1999).

    Article  CAS  Google Scholar 

  19. Neudecker, B. J. & Weppner, W. Li9SiAlO8: A lithium ion electrolyte for voltages above 5.4 V. J. Electrochem. Soc. 143, 2198–2203 (1996).

    Article  CAS  Google Scholar 

  20. Song, J. Y., Wang, Y. Y. & Wan, C. C. Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride)—A comparison with polypropylene separators. J. Electrochem. Soc. 147, 3219–3225 (2000).

    Article  CAS  Google Scholar 

  21. Saruwatari, H., Kuboki, T., Kishi, T., Mikoshiba, S. & Takami, N. Imidazolium ionic liquids containing LiBOB electrolyte for lithium battery. J. Power Sources 195, 1495–1499 (2010).

    Article  CAS  Google Scholar 

  22. Boultif, A. & Louer, D. Indexing of powder diffraction patterns for low-symmetry lattice by the successive dichotomy method. J. Appl. Crystallogr. 24, 987–993 (1991).

    Article  CAS  Google Scholar 

  23. Favre-Nicolin, V. & Cerny, R. FOX, ‘free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 35, 734–743 (2002).

    Article  CAS  Google Scholar 

  24. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

    Article  CAS  Google Scholar 

  25. Oishi, R. et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. 600, 94–96 (2009).

    Article  CAS  Google Scholar 

  26. Ohta, N. et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007).

    Article  CAS  Google Scholar 

Download references


This work was partially supported by a Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science. The synchrotron and neutron radiation experiments were carried out as projects approved by the Japan Synchrotron Radiation Research Institute (JASRI) (proposal No 2010A1584) and the Japan Proton Accelerator Research Complex (J-PARC) and Institute of Materials Structure Science (proposal No 2009B0039 and No. 2010A0060), respectively.

Author information

Authors and Affiliations



N.K. and Y.Y. conceived the synthesis experiments and the electrochemical characterization. K.H., M.Y. and T.K. carried out the structural analysis. M.H. and R.K. analysed the data and wrote the manuscript. Y.K., S.H. and K.K. analysed the electrochemical data. A.M. carried out the synchrotron X-ray experiments.

Corresponding author

Correspondence to Ryoji Kanno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 566 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamaya, N., Homma, K., Yamakawa, Y. et al. A lithium superionic conductor. Nature Mater 10, 682–686 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing