Abstract
Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range — of over five orders of magnitude — from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis
Nature Communications Open Access 30 March 2023
-
Soft Electronics for Health Monitoring Assisted by Machine Learning
Nano-Micro Letters Open Access 15 March 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Balandin, A. A. Better computing through CPU cooling. IEEE Spectrum 29–33 (October, 2009).
Ioffe, A. F. Semiconductor Thermoelements and Thermal Cooling (Nauka, 1956).
Borca-Tasciuc, T. et al. Thermal conductivity of InAs/AlSb superlattices. Microscale Thermophys. Eng. 5, 225–231 (2001).
Balandin, A. & Wang, K. L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B. 58, 1544–1549 (1998).
Lepri, S., Livi, R. & Politi, A. Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003).
Basile, G., Bernardin, C. & Olla, S. Momentum conversion model with anomalous thermal conductivity in low dimensional system. Phys. Rev. Lett. 96, 204303–204304 (2006).
Chang, C. W., Okawa, D., Garcia, H., Majumdar, A. & Zettl, A. Breakdown of Fourier's law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903–075904 (2008).
Narayan, O. & Ramaswamy, S. Anomalous heat conduction in one dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601–200604 (2002).
Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996).
Kim, P., Shi, L., Majumdar, A. & Mc Euen, P. L. Thermal transport measurement of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
Balandin, A. A. et al. Superior thermal conductivity of single layer graphene. Nano Lett. 8, 902–907 (2008).
Ghosh, S. et al. Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).
Calizo, I., Balandin, A. A., Bao, W., Miao, F. & Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 2645–2649 (2007).
Ghosh, S. et al. Thermal properties of polycrystalline graphene films and reduced graphene-oxide films. MRS Proc. S6.2, 198 (2010).
Bhandari, C. M. & Rowe, D. M. Thermal Conduction in Semiconductors (Wiley & Sons, 1988).
Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990).
Klemens, P. G. Solid State Physics Vol. 7 (eds Seitz, F. & Turnbull, D.) 1–98 (Academic, 1958).
Klemens, P. G. Theory of the A-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 7, 332–339 (2000).
Pierson, H. O. Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (Noyes Publications, 2010).
Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).
Parrott, J. E. & Stuckes, A. D. Thermal Conductivity of Solids (Methuen, 1975).
Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).
Balandin, A. & Wang, K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149–6153 (1998).
Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements: a comprehensive review. J. Phys. Chem. Ref. Data 3 (suppl. 1), 1–30 (1974).
Woodcraft, A. L. et al. Thermal conductivity measurements of pitch-bonded at millikelvin temperatures: finding a replacement for AGOT graphite. Cryogenics 49, 159–164 (2009).
Nelson, F. J. et al. Optical properties of large-area polycrystalline chemical vapour deposited graphene by spectroscopic ellipsometry. Appl. Phys. Lett. 97, 253110 (2010).
Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).
Klemens, P. G. & Pedraza, D. F. Thermal conductivity of graphite in basal plane. Carbon 32, 735–741 (1994).
Cahill, D. G. & Pohl, R. O. Heat flow and lattice vibrations in glasses. Solid State Commun. 70, 927–930 (1989).
Robertson, J. Diamond like amorphous carbon. Mater. Sci. Eng. R37, 129–281 (2002).
Morath, C. J. et al. Picosecond optical studies of amorphous diamond and diamond-like carbon: Thermal conductivity and longitudinal sound velocity. J. Appl. Phys. 76, 2636–2640 (1994).
Hurler, W., Pietralla, M. & Hammerschmidt, A. Determination of thermal properties of hydrogenated amorphous carbon thin films via mirage effect measurement. Diam. Relat. Mater. 4, 954–957 (1995).
Zhang, Z. J., Fan, S., Huang, J. & Lieber, C. M. Diamond-like properties in single phase carbon nitride solid. Appl. Phys. Lett. 68, 2639–2641 (1996).
Bullen, A. J., O'Hara, K. E., Cahill, D. G., Monteiro, O. & von Keudell, A. Thermal conductivity of amorphous carbon thin films. J. Appl. Phys. 88, 6317–6320 (2000).
Chen, G., Hui, P. & Xu, S. Thermal conduction in metalized tetrahedral amorphous carbon (ta-C) films on silicon. Thin Solid Films 366, 95–99 (2000).
Shamsa, M. et al. Thermal conductivity of diamond like carbon films. Appl. Phys. Lett. 89, 161921 (2006).
Balandin, A. A., Shamsa, M., Liu, W. L., Casiraghi, C. & Ferrari, A. C. Thermal conductivity of ultrathin tetrahedral amorphous carbon. Appl. Phys. Lett. 93, 043115 (2008).
Butler, J. E. & Sumant, A. V. The CVD of nanodiamond materials. Chem. Vapor Depos. 14, 145–160 (2008).
Auciello, O. & Sumant, A. V. Status review of the science and technology of devices. Diam. Relat. Mater. 19, 699–718 (2010).
Gruen, D. M., Liu, S., Krauss, A. R. & Pan, X. Buckyball microwave plasmas: Fragmentation and diamond-film growth. J. Appl. Phys. 75, 1758–1763 (1994).
Hartmann, J., Voigt, P. & Reichling, M. Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope. J. Appl. Phys. 81, 2966–2972 (1997).
Reichling, M., Klotzbucher, T. & Hartmann, J. Local variation of room-temperature thermal conductivity in high-quality polycrystalline diamond. Appl. Phys. Lett. 73, 756–758 (1998).
Philip, J. et al. Elastic, mechanical and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 2164–2171 (2003).
Angadi, M. A. et al. Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 99, 114301 (2006).
Liu, W. L. et al. Thermal conduction in nanocrystalline diamond thin films: Effect of grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89, 171915 (2006).
Shamsa, M. et al. Thermal conductivity of nitrogened ultrananocrystalline diamond films on silicon. J. Appl. Phys. 103, 083538 (2008).
Khitun, A., Balandin, A., Liu, J. L. & Wang, K. L. In-plane lattice thermal conductivity of quantum-dot superlattice. J. Appl. Phys. 88, 696–699 (2000).
Braginsky, L., Shklover, V., Hofmann, H. & Bowen, P. High-temperature thermal conductivity of porous Al2O3 nanostructures. Phys. Rev. B 70, 134201 (2004).
Ferrari, A. C. & Robertson, J. Origin of the 1,150 cm-1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001).
Goyal, V., Subrina, S., Nika, D. L. & Balandin, A. A. Reduced thermal resistance of the silicon-synthetic diamond composite substrate at elevated temperatures. Appl. Phys. Lett. 97, 031904 (2010).
Saito, K. & Dhar, A. Heat conduction in a three dimensional anharmonic crystal. Phys. Rev. Lett. 104, 040601 (2010).
Lippi, A. & Livi, R. Heat conduction in two-dimensional nonlinear lattices. J. Stat. Phys. 100, 1147–1172 (2000).
Yang, L. Finite heat conduction in a 2D disorder lattice. Phys. Rev. Lett. 88, 094301 (2002).
Dhar, A. Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86, 5882–5885 (2001).
Casher, A. & Lebowitz, J. L. Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12, 1701–1711 (1971).
Klemens, P. G. Theory of thermal conduction in the ceramic films. Int. J. Thermophys. 22, 265–275 (2001).
Nika, D. L., Ghosh, S., Pokatilov, E. P. & Balandin, A. A. Lattice thermal conductivity of graphene flakes: Comparison and bulk graphite. Appl. Phys. Lett. 94, 203103 (2009).
Hone, J., Whitney, M., Piskoti, C. & Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999).
Yu, C. H., Shi, L., Yao, Z., Li, D. Y. & Majumdar, A. Thermal conductance and thermopower of an single-wall carbon nanotubes. Nano Lett. 5, 1842–1846 (2005).
Fujii, M. et al. Measuring thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005).
Berber, S., Kwon, Y-K. & Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).
Che, J., Cagin, T. & Goddard, W. A. III Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000).
Osman, M. A. & Srivastava, D. Temperature dependence of thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12, 21–24 (2001).
Lindsay, L., Broido, D. A. & Mingo, N. Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B 82, 161402 (2010).
Donadio, D. & Galli, G. Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2007).
Chang, C. W. et al. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97, 085901 (2006).
Rego, L. C. G. & Kirczenow, G. Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Phys. Rev. B 59, 13080–13086 (1999).
Ghosh, S., Nika, D. L., Pokatilov, E. P. & Balandin, A. A. Heat conduction in graphene: Experimental study and theoretical interpretation. New J. Phys. 11, 095012 (2009).
Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nature Mater. 9, 555–558 (2010).
Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010).
Faugeras, C. et al. Thermal conductivity of graphene in Corbino membrane geometry. ACS Nano 4, 1889–1892 (2010).
Jauregui, L. A. et al. Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 28, 73–83 (2010).
Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).
Murali, R., Yang, Y., Brenner, K., Beck, T. & Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 94, 243114 (2009).
Zhong, W. R., Zhang, M. P., Ai, B. Q. & Zheng, D. Q. Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study. Appl. Phys. Lett. 98, 113107 (2011).
Singh, D., Murthy, J. Y. & Fisher, T. S. Mechanism of thermal conductivity reduction in few-layer graphene. Preprint at http://arxiv.org/abs/1104.4964 (2011).
Jang, W., Chen, Z., Bao, W., Lau, C. N. & Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10, 3909–3913 (2010).
Nika, D. L., Pokatilov, E. P., Askerov, A. S. & Balandin, A. A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009).
Evans, W. J., Hu, L. & Keblinsky, P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Appl. Phys. Lett. 96, 203112 (2010).
Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010).
Munoz, E., Lu, J. & Yakobson, B. I. Ballistic thermal conductance of graphene ribbons. Nano Lett. 10, 1652–1656 (2010).
Savin, A. V., Kivshar, Y. S. & Hu, B. Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B 82, 195422 (2010).
Jiang, J-W., Wang, J-S. & Li, B. Thermal conductance of graphite and dimerite. Phys. Rev. B 79, 205418 (2009).
Huang, Z., Fisher, T. S. & Murthy, J. Y. Simulation of phonon transmission through graphene and graphene nanoribbons with a green's function method. J. Appl. Phys. 108, 094319 (2010).
Hu, J., Ruan, X. & Chen, Y. P. Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamic study. Nano Lett. 9, 2730–2735 (2009).
Guo, Z., Zhang, D. & Gong, X-G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95, 163103 (2009).
Chen, S. et al. Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5, 321–328 (2011).
Lee, J. U., Yoon, D., Kim, H., Lee, S. W. & Cheong, H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 83, 081419 (2011).
Mak, K. F., Shan, J. & Heinz, T. F. Seeing many-body effects in single and few layer graphene: observation of two-dimensional saddle point excitons. Phys. Rev. Lett. 106, 046401 (2011).
Huang, Y., Wu, J. & Hwang, K. C. Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006).
Odegard, G. M., Gates, T. S., Nicholson, L. M. & Wise, K. E. Continuum model for the vibration of multilayered graphene sheets. Compos. Sci. Technol. 62, 1869 (2002).
Kapitza, P. L. Collected Papers of P. L. Kapitza Vol. II (ed. ter Haar, D.) 581 (Pergamon Press, 1967).
Freitag, M. et al. Energy dissipation in graphene field effect transistors. Nano Lett. 9, 1883–1888 (2009).
Chen, Z., Jang, W., Bao, W., Lau, C. N. & Dames, C. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95, 161910 (2009).
Mak, K. F., Liu, C. H. & Heinz, T. F. Thermal conductance at the graphene-SiO2 interface measured by optical pump-probe spectroscopy. Preprint at http://arxiv.org/abs/1009.0231 (2010).
Koh, Y. K., Bae, M-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).
Schmidt, A. J., Collins, K. C., Minnich, A. J. & Chen, G. Thermal conductance and phonon transmissivity of metal-graphite interfaces. J. Appl. Phys. 107, 104907 (2010).
Persson, B. N. J. & Ueba, H. Heat transfer between weakly coupled systems: Graphene on a-SiO2 . Europhys. Lett. 91, 56001 (2010).
Konatham, D. & Striolo, A. Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 95, 163105 (2009).
Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. & Grulke, E. A. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001).
Biercuk, M. J. et al. Carbon nanotube composite for thermal management. Appl. Phys. Lett. 80, 2767–2769 (2002).
Konatham, D. & Striolo, A. Thermal boundary resistance at the graphene-oil interface. Mol. Phys. 109, 97–111 (2011).
Yu, A., Itkis, M. E., Bekyarova, E & Haddon, R. C. Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composite. Appl. Phys. Lett. 89, 133102 (2006).
Yu, A., Ramesh, P., Itkis, M. E., Bekyarova, E. & Haddon, R. C. Graphite nanoplatelet- epoxy composite thermal interface materials. J. Phys. Chem. Lett. 111, 7565–7569 (2007).
Yu, W., Xie, H. & Chen, W. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J. Appl. Phys. 107, 094317 (2010).
Wang, S., Tambraparni, M., Qiu, J., Tipton, J. & Dean, D. Thermal expansion of graphene composites. Macromolecules 42, 5251–5255 (2009).
Shahil, K. M. F., Goyal, V. & Balandin, A. A. Thermal properties of graphene: Applications in thermal interface materials. ECS Trans. 35, 193–195 (2011).
Zhang, K., Chai, Y., Yuen, M. M. F., Xiao, D. G. W. & Chan, P. C. H. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 19, 215706 (2008).
Veca, L. M. et al. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088–2092 (2009).
Kim, K. et al. High-temperature stability of suspended single-layer graphene. Phys. Status Solidi 11, 302–304 (2010).
Lotya, M., King, P. J., Khan, U., De, S. & Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. ACS Nano. 4, 3155–3162 (2010).
Segal, M. Selling graphene by the ton. Nature Nanotech. 4, 612–614 (2009).
Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magneto-thermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).
Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).
Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413 (2009).
Hwang, E. H., Rossi, E. & Das Sarma, S. Theory of carrier transport in bilayer graphene. Phys. Rev. B 80, 235415 (2009).
Bao, W. S., Liu, S. Y. & Lei, X. L. Nonlinear d.c. transport in graphene. J. Phys. Condens. Mat. 22, 315502 (2010).
Kubakaddi, S. S. & Bhargavi, K. S. Enhancement of phonon-drag thermopower in bilayer graphene. Phys. Rev. B 82, 155410 (2010).
Hu, J., Schiffli, S., Vallabhaneni, A., Ruan, X. & Chen, Y. P. Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study. Appl. Phys. Lett. 97, 133107 (2010).
Makeev, M. A. & Srivastava, D. Silicon carbide nanowires under external loads: An atomistic simulation study. Appl. Phys. Lett. 95, 181908 (2009).
Sevincli, H. & Cuniberti, G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010).
Teweldebrhan, D. & Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009).
Wang, D. & Shi, J. Effect of charged impurities on the thermoelectric power of graphene near the Dirac point. Phys. Rev. B. 83, 113403 (2011).
Subrina, S., Kotchetkov, D. & Balandin, A. A. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electr. Device Lett. 30, 1281 (2009).
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
Reina, A. et al. Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1313 (2009).
Yan, Z., Liu, G., Subrina, S. & Balandin, A. A. Experimental demonstration of efficient thermal management of high-power GaN/AlGaN transistors with graphene lateral heat spreaders. MRS Proc. Y3.5 (2011).
Zou J. & Balandin, A. A. Phonon heat conduction in a semiconductor nanowire, J. Appl. Phys. 89, 2932–2938 (2001).
Zakharchenko, K. V., Los, J. H., Katsnelson, M. I. & Fasolino, A. Atomistic simulations of structural and thermodynamic properties of bilayer graphene. Phys. Rev. B 81, 235439 (2010).
Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).
Michel, K. H. & Verberck, B. Theory of the evolution of phonon spectra and elastic constants from graphene to graphite. Phys. Rev. B 78, 085424 (2008).
Shelling, P. K. & Keblinski, P. Thermal expansion of carbon structures. Phys. Rev. B 68, 035425 (2003).
Pereira, V. M. & Castro-Neto, A. H. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 103, 046801 (2009).
Xu, X. et al. Phonon transport in suspended single layer graphene. Preprint at http://arxiv.org/abs/1012.2937 (2010).
Wang, Z. et al. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11, 113–118 (2011).
Pettes, M. T., Jo, I., Yao, Z. & Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 11, 1195–1200 (2011).
Pettes, M. T. & Shi, L. Thermal and structural characterization of individual single-, double- and multi-walled carbon nanotubes. Adv. Funct. Mater. 19, 3918–3925 (2009).
Hsu, I. K. et al. Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 92, 063119 (2008).
Capinski, W. S. et al. Thermal conductivity of isotopically enriched Si. Appl. Phys. Lett. 71, 2109–2111 (1997).
Inyushkin, A. V., Taldenkov, A. N., Gibin, A. M., Gusev, A. V. & Pohl, H. J. Ab initio theory of the lattice thermal conductivity in diamond. Phys. Status Solidi 1, 2995–2998 (2004).
Zhang, H. et al. Isotope effect on the thermal conductivity of graphene. J. Nanomater. 2010, 537657 (2010).
Wei, D., Song, Y. & Wang, F. A. A simple molecular mechanics potential for mm scale graphene simulations from the adaptive force matching method. J. Chem. Phys. 134, 184704 (2011).
Acknowledgements
I am indebted to K. Saito, L. Lindsay, N. Mingo, C. Dames, R. S. Ruoff, L. Shi, N. Mounet, N. Marzari, B. Q. Ai and T. Heinz for providing figure files. I thank E. P. Pokatilov, D. Nika, C. Dames, L. Shi, D. Cahill, N. Mingo, R. S. Ruoff, P. Kim, J. Shi, M. Dresselhaus, A. Geim and K. Novoselov for useful discussions. This work was supported by the Office of Naval Research (ONR) through award N00014-10-1-0224, Semiconductor Research Corporation (SRC) and Defense Advanced Research Projects Agency (DARPA) through Focus Center Research Program (FCRP) Center on Functional Engineered Nano Architectonics (FENA), and DARPA Defense Microelectronics Activity (DMEA) under agreement H94003-10-2-1003. Past funding from US Air Force Office of Scientific Research (AFOSR) through contract A9550-08-1-0100 is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Balandin, A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3064
This article is cited by
-
Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis
Nature Communications (2023)
-
Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production
Nano Research (2023)
-
Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects
Journal of Molecular Modeling (2023)
-
Soft Electronics for Health Monitoring Assisted by Machine Learning
Nano-Micro Letters (2023)
-
Carbon honeycomb structure with high axial thermal transport and strong robustness
Rare Metals (2023)