Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ nanocompression testing of irradiated copper

Abstract

Increasing demand for energy and reduction of carbon dioxide emissions has revived interest in nuclear energy. Designing materials for radiation environments necessitates a fundamental understanding of how radiation-induced defects alter mechanical properties. Ion beams create radiation damage efficiently without material activation, but their limited penetration depth requires small-scale testing. However, strength measurements of nanoscale irradiated specimens have not been previously performed. Here we show that yield strengths approaching macroscopic values are measured from irradiated ~400 nm-diameter copper specimens. Quantitative in situ nanocompression testing in a transmission electron microscope reveals that the strength of larger samples is controlled by dislocation–irradiation defect interactions, yielding size-independent strengths. Below ~400 nm, size-dependent strength results from dislocation source limitation. This transition length-scale should be universal, but depends on material and irradiation conditions. We conclude that for irradiated copper, and presumably related materials, nanoscale in situ testing can determine bulk-like yield strengths and simultaneously identify deformation mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of experimental procedure.
Figure 2: In situ TEM compression test of a (100)-oriented 118 nm diameter copper pillar irradiated to 0.8 dpa.
Figure 3: Size-dependent yield stress for (100)-oriented irradiated and unirradiated copper nanocompression samples.
Figure 4: Dark-field image of a deformed irradiated (100) copper specimen with 130 nm diameter.
Figure 5: Post deformation irradiation defect characterization using high resolution TEM.

Similar content being viewed by others

References

  1. Grimes, R. W. & Nuttall, W. J. Generating the option of a two-stage nuclear renaissance. Science 329, 799–803 (2010).

    Article  CAS  Google Scholar 

  2. Odette, G. R., Alinger, M. J. & Wirth, B. D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).

    Article  CAS  Google Scholar 

  3. Greenfield, I. & Wilsdorf, H. G. Effect of neutron irradiation on plastic deformation of copper single crystals. J. Appl. Phys. 32, 827–839 (1961).

    Article  CAS  Google Scholar 

  4. Bei, H., Shim, S., Miller, M. K., Pharr, G. M. & George, E. P. Effects of focused ion beam milling on the nanomechanical behaviour of a molybdenum-alloy single crystal. Appl. Phys. Lett. 91, 111915 (2007).

    Article  Google Scholar 

  5. Mansur, L. K. Theory and experimental background on dimensional changes in irradiated alloys. J. Nucl. Mater. 216, 97–123 (1994).

    Article  CAS  Google Scholar 

  6. Was, G. S. et al. Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 300, 198–216 (2002).

    Article  CAS  Google Scholar 

  7. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  8. Pharr, G. M., Herbert, E. G. & Gao, Y. The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010).

    Article  CAS  Google Scholar 

  9. Hosemann, P. et al. An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation. J. Nucl. Mater. 375, 135–143 (2008).

    Article  CAS  Google Scholar 

  10. Kiener, D., Durst, K., Rester, M. & Minor, A. M. Revealing deformation mechanisms with nanoindentation. JOM 61, 14–23 (2009).

    Article  Google Scholar 

  11. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  12. Uchic, M. D., Shade, P. A. & Dimiduk, D. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009).

    Article  CAS  Google Scholar 

  13. Li, N., Mara, N. A., Wang, Y. Q., Nastasi, M. & Misra, A. Compressive flow behaviour of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater. 64, 974–977 (2011).

    Article  CAS  Google Scholar 

  14. Shan, Z. W., Mishra, R. K., Asif, S. A. S., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater. 73, 115–119 (2008).

    Article  Google Scholar 

  15. Oh, S. H., Legros, M., Kiener, D. & Dehm, G. In situ observation of dislocation nucleation and escape in a submicron Al single-crystal. Nature Mater. 8, 95–100 (2009).

    Article  CAS  Google Scholar 

  16. Jang, D. C. & Greer, J. R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nature Mater. 9, 215–219 (2010).

    Article  CAS  Google Scholar 

  17. Gianola, D. S. & Eberl, C. Micro- and nanoscale tensile testing of materials. JOM 61, 24–35 (2009).

    Article  Google Scholar 

  18. Yu, Q. et al. Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010).

    Article  CAS  Google Scholar 

  19. Marian, J., Martinez, E., Lee, H. J. & Wirth, B. D. Micro/meso-scale computational study of dislocation-stacking-fault tetrahedron interactions in copper. J. Mater. Res. 24, 3628–3635 (2009).

    Article  CAS  Google Scholar 

  20. Kadoyoshi, T. et al. Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in fcc metals. Acta Mater. 55, 3073–3080 (2007).

    Article  CAS  Google Scholar 

  21. Bacon, D. J., Gao, F. & Osetsky, Y. N. The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J. Nucl. Mater. 276, 1–12 (2000).

    Article  CAS  Google Scholar 

  22. Robach, J. S., Robertson, I. M., Lee, H. J. & Wirth, B. D. Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54, 1679–1690 (2006).

    Article  CAS  Google Scholar 

  23. Matsukawa, Y., Briceno, M. & Robertson, I. M. Combining in situ transmission electron microscopy and molecular dynamics computer simulations to reveal the interaction mechanisms of dislocations with stacking-fault tetrahedron in nuclear materials. Microsc. Res. Tech. 72, 284–292 (2009).

    Article  CAS  Google Scholar 

  24. Matsukawa, Y., Osetsky, Y. N., Stoller, R. E. & Zinkle, S. J. Destruction processes of large stacking fault tetrahedra induced by direct interaction with gliding dislocations. J. Nucl. Mater. 351, 285–294 (2006).

    Article  CAS  Google Scholar 

  25. Minor, A. M., Morris, J. W. & Stach, E. A. Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625–1627 (2001).

    Article  CAS  Google Scholar 

  26. Minor, A. M. et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nature Mater. 5, 697–702 (2006).

    Article  CAS  Google Scholar 

  27. Greer, J. R. Bridging the gap between computational and experimental length scales: A review on nanoscale plasticity. Rev. Adv. Mater. Sci. 13, 59–70 (2006).

    Google Scholar 

  28. Kiener, D. & Minor, A. M. Source controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy. Acta Mater. 59, 1328–1337 (2011).

    Article  CAS  Google Scholar 

  29. Dai, Y. & Victoria, M. Defect structures in deformed FCC metals. Acta Mater. 45, 3495–3501 (1997).

    Article  CAS  Google Scholar 

  30. Singh, B. N. & Zinkle, S. J. Defect accumulation in pure fcc metals in the transient regime: A review. J. Nucl. Mater. 206, 212–229 (1993).

    Article  CAS  Google Scholar 

  31. Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611–5626 (1998).

    Article  CAS  Google Scholar 

  32. Girault, B., Schneider, A. S., Frick, C. P. & Arzt, E. Strength effects in micropillars of a dispersion strengthened superalloy. Adv. Eng. Mater. 12, 385–388 (2010).

    Article  CAS  Google Scholar 

  33. Rao, S. I. et al. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Phil. Mag. 87, 4777–4794 (2007).

    Article  CAS  Google Scholar 

  34. Singh, B. N., Horsewell, A., Toft, P. & Edwards, D. J. Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper. J. Nucl. Mater. 224, 131–140 (1995).

    Article  CAS  Google Scholar 

  35. Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping Range of Ions in Matter (Pergamon, 1985).

    Book  Google Scholar 

  36. Hosemann, P., Maloy, S. A., Greco, R. R., Swadener, J. G. & Romero, T. Oxygen effects on irradiated tantalum alloys. J. Nucl. Mater. 384, 25–29 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Berkeley Nuclear Research Centre (BNRC), established by the University of California Office of the President and the UC-National Laboratory Fee Research Program. D.K. gratefully acknowledges the financial support of the Austrian Science Fund (FWF) through the Erwin Schrödinger fellowship J2834-N20 and help with high-resolution imaging from Z. Zhang at the Erich Schmid Institute. The in situ TEM experiments were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract # DE-AC02-05CH11231. The ion-beam irradiation was performed with the support of the staff at the Ion Beam Materials Laboratory at Los Alamos National Laboratory. The authors acknowledge inspiring discussions with T. E. Mitchell.

Author information

Authors and Affiliations

Authors

Contributions

D.K. and P.H. designed the research and conducted the experiments. A.M.M. helped with the interpretation of the results and all authors contributed to the writing of the paper.

Corresponding author

Correspondence to D. Kiener.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie

Supplementary Movie (AVI 2445 kb)

Supplementary Information

Supplementary Information (PDF 719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiener, D., Hosemann, P., Maloy, S. et al. In situ nanocompression testing of irradiated copper. Nature Mater 10, 608–613 (2011). https://doi.org/10.1038/nmat3055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing