Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled enhancement of spin-current emission by three-magnon splitting

Abstract

Spin currents—the flow of angular momentum without the simultaneous transfer of electrical charge—play an enabling role in the field of spintronics1,2,3,4,5,6,7,8. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin–orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin–lattice coupling9 acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon–magnon interactions for developing spin-current based electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferromagnetic resonance and spin-current detection in YIG/Pt layered system.
Figure 2: The frequency and power dependence of the ISHE voltage and the microwave absorption in YIG.
Figure 3: Spin waves created by the three-magnon splitting measured using BLS.
Figure 4: Schematics of angular momentum flows in the YIG/Pt layered system.

Similar content being viewed by others

References

  1. Maekawa, S. Concepts in Spin Electronics (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  2. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  3. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  CAS  Google Scholar 

  4. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  5. Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys. 4, 851–854 (2008).

    Article  CAS  Google Scholar 

  6. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  7. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  8. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  9. Kittel, C. Introduction to Solid State Physics 7th edn (John Wiley, 1996).

    Google Scholar 

  10. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  11. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  12. Takahashi, S. & Maekawa, S. Spin current, spin accumulation and spin Hall effect. Sci Technol. Adv. Mater. 9, 014105 (2008).

    Article  Google Scholar 

  13. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, 1994).

    Google Scholar 

  14. Sandweg, C. W., Kajiwara, Y., Ando, K., Saitoh, E. & Hillebrands, B. Enhancement of the spin pumping efficiency by spin wave mode selection. Appl. Phys. Lett. 97, 252504 (2010).

    Article  Google Scholar 

  15. Kittel, C. On the theory of ferromangetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    Article  CAS  Google Scholar 

  16. Tserkovnyak, Y. & Brataas, A. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  17. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. Dynamic stiffness of spin valves. Phys. Rev. B 67, 140404 (2003).

    Article  Google Scholar 

  18. Ando, K. & Saitoh, E. Inverse spin-Hall effect in palladium at room temperature. J. Appl. Phys. 108, 113925 (2010).

    Article  Google Scholar 

  19. Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: Linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001).

    Article  CAS  Google Scholar 

  20. Ordóňez-Romero, C. L. et al. Three-magnon splitting and confluence processes for spin-wave excitations in yttrium iron garnet films: Wave vector selective Brillouin light scattering measurements and analysis. Phys. Rev. B 79, 144428 (2009).

    Article  Google Scholar 

  21. Schultheiss, H. et al. Direct current control of three magnon scattering processes in spin-valve nanocontacts. Phys. Rev. Lett. 103, 157202 (2009).

    Article  CAS  Google Scholar 

  22. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. Physica C 19, 7013–7033 (1986).

    Google Scholar 

  23. Wigen, P. E. Nonlinear Phenomena and Chaos in Magnetic Materials (World Scientific, 1994).

    Book  Google Scholar 

  24. Khitun, A., Bao, M. & Wang, K. L. Spin wave magnetic nanofabric: A new approach to spin-based logic circuity. IEEE Trans. Mag. 44, 2141–2151 (2008).

    Article  CAS  Google Scholar 

  25. Einstein, A. & de Haas, W. J. Experimenteller Nachweis der Ampereschen Molekularstörme, Verhandlungen. Dtsch. Phys. Gesellschaft. 17, 152–170 (1915).

    Google Scholar 

  26. Bloch, F. Zur Theorie des Ferromagnetismus. Z. Phys. 61, 206–219 (1930).

    Article  CAS  Google Scholar 

  27. Bloembergen, N. S., Shapiro, P. S., Pershan, O. & Artman, Cross-relaxation in spin systems. Phys. Rev. 114, 445–459 (1959).

    Article  CAS  Google Scholar 

  28. Holstein, T. & Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940).

    Article  Google Scholar 

  29. Majlis, N. The Quantum Theory of Magnetism 2nd edn (World Scientific Publishing, 2007).

    Book  Google Scholar 

  30. Sandweg, C. W. et al. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106, 216601 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Slavin, E. Saitoh, K. Ando, K. Harii and Y. Tserkovnyak for their valuable discussions. H.K. is grateful to the Royal Society for their financial support via TG102227. S.O.D. acknowledges helpful discussions with B. Koopmans on the conservation of angular momentum in ferromagnets. Work in Münster has been supported by the Deutsche Forschungsgemeinschaft and by the European Union through the STREP Project Master NMP3-SL-2008-212257.

Author information

Authors and Affiliations

Authors

Contributions

Sample preparation: H.K., O.D. and D.F.; measurement and data analysis: O.D., H.K. and V.E.D.; interpretation and theoretical calculation: S.O.D. and H.K.; manuscript writing: S.O.D., H.K., V.E.D. and A.J.F. This project was initiated and managed by H.K. and S.O.D.

Corresponding author

Correspondence to Hidekazu Kurebayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 849 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurebayashi, H., Dzyapko, O., Demidov, V. et al. Controlled enhancement of spin-current emission by three-magnon splitting. Nature Mater 10, 660–664 (2011). https://doi.org/10.1038/nmat3053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing