Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves

Abstract

The non-local spin injection in lateral spin valves is strongly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin-valve voltage, which determines the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 μV. Here we show that lateral spin valves with low-resistivity NiFe/MgO/Ag junctions enable efficient spin injection with high applied current density, which leads to the spin-valve voltage increasing 100-fold. Hanle effect measurements demonstrate a long-distance collective 2π spin precession along a 6-μm-long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin-current-based memory, logic and sensing devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sample structure and representative non-local spin-valve signal.
Figure 2: Dependence of non-local spin-valve signal on interface resistance and injector–detector separation.
Figure 3: Spin-precession measurements by using the Hanle effect.
Figure 4: Spin-valve signal and voltage for various NiFe/MgO/Ag junctions.

References

  1. 1

    Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Tsoi, M et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Sun, J. Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    CAS  Article  Google Scholar 

  11. 11

    Van Son, P. C., van Kempen, H. & Wyder, P. Boundary resistance of ferromagnetic–nonferromagnetic metal interface. Phys. Rev. Lett. 58, 2271–2273 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Kimura, T., Otani, Y. & Hamrle, J. Switching magnetization of nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys. 4, 851–854 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Sun, J. Z. et al. A three-terminal spin-torque-driven magnetic switch. Appl. Phys. Lett. 95, 083506 (2009).

    Article  Google Scholar 

  15. 15

    Ilgaz, D. et al. Domain-wall depinning assisted by pure spin currents. Phys. Rev. Lett. 105, 076601 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Jedema, F. J., Heershe, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Garzon, S., Žutıć, I. & Webb, R. A. Temperature-dependent asymmetry of the nonlocal spin-injection resistance: Evidence for spin nonconserving interface scattering. Phys. Rev. Lett. 94, 176601 (2005).

    Article  Google Scholar 

  19. 19

    Valenzuela, S. O., Monsma, D. J., Marcus, C. M., Narayanamurti, V. & Tinkham, M. Spin polarized tunneling in room-temperature mesoscopic spin valves. Phys. Rev. Lett. 94, 166601 (2005).

    Article  Google Scholar 

  20. 20

    Godfrey, R. & Johnson, M. Spin injection in mesoscopic silver wires: Experimental test of resistance mismatch. Phys. Rev. Lett. 96, 136601 (2006).

    Article  Google Scholar 

  21. 21

    Kimura, T. & Otani, Y. Large spin accumulation in a permalloy–silver lateral spin valve. Phys. Rev. Lett. 99, 196604 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Vogel, A., Wulfhorst, J. & Meier, G. Enhanced spin injection and detection in spin valves with intergrated tunnel barrier. Appl. Phys. Lett. 94, 122510 (2009).

    Article  Google Scholar 

  23. 23

    Wang, X. J., Zou, H., Ocola, L. E. & Ji, Y. High spin injection polarization at an elevated dc bias in tunnel-junction-based lateral spin valves. Appl. Phys. Lett. 95, 022519 (2009).

    Article  Google Scholar 

  24. 24

    Wulfhekel, W. et al. Single-crystal magnetotunnel junctions. Appl. Phys. Lett. 78, 509–511 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Bakker, F. L., Slachter, A., Adam, J. P. & van Wees, B. J. Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves. Phys. Rev. Lett. 105, 136601 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Fukuma, Y., Wang, L., Idzuchi, H. & Otani, Y. Enhanced spin accumulation obtained by inserting low-resistance MgO interface in metallic lateral spin valves. Appl. Phys. Lett. 97, 012507 (2010).

    Article  Google Scholar 

  27. 27

    Jedema, F. J., Costache, M. V., Heersche, H. B., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl. Phys. Lett. 81, 5162–5164 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 052409 (2003).

    Article  Google Scholar 

  29. 29

    Dubois, S. et al. Evidence for a short spin diffusion length in permalloy from the giant magnetoresistance of multilayered nanowires. Phys. Rev. B 60, 477–484 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    CAS  Article  Google Scholar 

  31. 31

    Johnson, M. & Silsbee, R. H. Coupling of electronic charge and spin at a ferromagnetic–paramagnetic metal interface. Phys. Rev. B 37, 5312–5325 (1988).

    CAS  Article  Google Scholar 

  32. 32

    Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids (Plenum, 1986).

    Google Scholar 

  34. 34

    Žutıć, I., Fabian, J. & Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  35. 35

    Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Vant Erve, O. M. J. et al. Information processing with pure spin currents in silicon: Spin injection, extraction, manipulation, and detection. IEEE Trans. Electron Dev. 56, 2343–2347 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Koo, H. C. et al. Control of spin precession in a spin-injection field effect transistor. Science 325, 1515–1518 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Sasaki, T. et al. Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession. Appl. Phys. Lett. 96, 122101 (2010).

    Article  Google Scholar 

  39. 39

    Djayaprawira, D. D. et al. 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 092502 (2005).

    Article  Google Scholar 

  40. 40

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Grant-in-Aid for Scientific Research in Priority Area ‘Creation and control of spin current’ (No 19048013) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Affiliations

Authors

Contributions

Y.F., L.W. and H.I. designed the experiments, fabricated devices and carried out analysis. S.T. and S.M. developed the theoretical analysis. Y.O. planned and supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yasuhiro Fukuma or YoshiChika Otani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fukuma, Y., Wang, L., Idzuchi, H. et al. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Mater 10, 527–531 (2011). https://doi.org/10.1038/nmat3046

Download citation

Further reading

Search

Quick links