Abstract
The non-local spin injection in lateral spin valves is strongly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin-valve voltage, which determines the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 μV. Here we show that lateral spin valves with low-resistivity NiFe/MgO/Ag junctions enable efficient spin injection with high applied current density, which leads to the spin-valve voltage increasing 100-fold. Hanle effect measurements demonstrate a long-distance collective 2π spin precession along a 6-μm-long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin-current-based memory, logic and sensing devices.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Spintronic devices: a promising alternative to CMOS devices
Journal of Computational Electronics Open Access 19 January 2021
-
Clear variation of spin splitting by changing electron distribution at non-magnetic metal/Bi2O3 interfaces
Scientific Reports Open Access 03 April 2018
-
Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure
Nature Communications Open Access 22 September 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nature Mater. 3, 862–867 (2004).
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
Tsoi, M et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).
Sun, J. Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).
Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).
Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).
Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).
Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).
Van Son, P. C., van Kempen, H. & Wyder, P. Boundary resistance of ferromagnetic–nonferromagnetic metal interface. Phys. Rev. Lett. 58, 2271–2273 (1987).
Kimura, T., Otani, Y. & Hamrle, J. Switching magnetization of nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006).
Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys. 4, 851–854 (2008).
Sun, J. Z. et al. A three-terminal spin-torque-driven magnetic switch. Appl. Phys. Lett. 95, 083506 (2009).
Ilgaz, D. et al. Domain-wall depinning assisted by pure spin currents. Phys. Rev. Lett. 105, 076601 (2010).
Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).
Jedema, F. J., Heershe, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).
Garzon, S., Žutıć, I. & Webb, R. A. Temperature-dependent asymmetry of the nonlocal spin-injection resistance: Evidence for spin nonconserving interface scattering. Phys. Rev. Lett. 94, 176601 (2005).
Valenzuela, S. O., Monsma, D. J., Marcus, C. M., Narayanamurti, V. & Tinkham, M. Spin polarized tunneling in room-temperature mesoscopic spin valves. Phys. Rev. Lett. 94, 166601 (2005).
Godfrey, R. & Johnson, M. Spin injection in mesoscopic silver wires: Experimental test of resistance mismatch. Phys. Rev. Lett. 96, 136601 (2006).
Kimura, T. & Otani, Y. Large spin accumulation in a permalloy–silver lateral spin valve. Phys. Rev. Lett. 99, 196604 (2007).
Vogel, A., Wulfhorst, J. & Meier, G. Enhanced spin injection and detection in spin valves with intergrated tunnel barrier. Appl. Phys. Lett. 94, 122510 (2009).
Wang, X. J., Zou, H., Ocola, L. E. & Ji, Y. High spin injection polarization at an elevated dc bias in tunnel-junction-based lateral spin valves. Appl. Phys. Lett. 95, 022519 (2009).
Wulfhekel, W. et al. Single-crystal magnetotunnel junctions. Appl. Phys. Lett. 78, 509–511 (2001).
Bakker, F. L., Slachter, A., Adam, J. P. & van Wees, B. J. Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves. Phys. Rev. Lett. 105, 136601 (2010).
Fukuma, Y., Wang, L., Idzuchi, H. & Otani, Y. Enhanced spin accumulation obtained by inserting low-resistance MgO interface in metallic lateral spin valves. Appl. Phys. Lett. 97, 012507 (2010).
Jedema, F. J., Costache, M. V., Heersche, H. B., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin accumulation and spin precession at room temperature in metallic spin valves. Appl. Phys. Lett. 81, 5162–5164 (2002).
Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 052409 (2003).
Dubois, S. et al. Evidence for a short spin diffusion length in permalloy from the giant magnetoresistance of multilayered nanowires. Phys. Rev. B 60, 477–484 (1999).
Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).
Johnson, M. & Silsbee, R. H. Coupling of electronic charge and spin at a ferromagnetic–paramagnetic metal interface. Phys. Rev. B 37, 5312–5325 (1988).
Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).
Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids (Plenum, 1986).
Žutıć, I., Fabian, J. & Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).
Vant Erve, O. M. J. et al. Information processing with pure spin currents in silicon: Spin injection, extraction, manipulation, and detection. IEEE Trans. Electron Dev. 56, 2343–2347 (2009).
Koo, H. C. et al. Control of spin precession in a spin-injection field effect transistor. Science 325, 1515–1518 (2009).
Sasaki, T. et al. Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession. Appl. Phys. Lett. 96, 122101 (2010).
Djayaprawira, D. D. et al. 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 092502 (2005).
Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).
Acknowledgements
This work is partly supported by the Grant-in-Aid for Scientific Research in Priority Area ‘Creation and control of spin current’ (No 19048013) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Author information
Authors and Affiliations
Contributions
Y.F., L.W. and H.I. designed the experiments, fabricated devices and carried out analysis. S.T. and S.M. developed the theoretical analysis. Y.O. planned and supervised the project. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Fukuma, Y., Wang, L., Idzuchi, H. et al. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Mater 10, 527–531 (2011). https://doi.org/10.1038/nmat3046
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3046
This article is cited by
-
Correlation between pass-through flux of cobalt target and microstructure and magnetic properties of sputtered thin films
Rare Metals (2021)
-
Spintronic devices: a promising alternative to CMOS devices
Journal of Computational Electronics (2021)
-
Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet
Nature (2019)
-
Clear variation of spin splitting by changing electron distribution at non-magnetic metal/Bi2O3 interfaces
Scientific Reports (2018)
-
Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure
Nature Communications (2017)