Abstract
Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays ‘super anisotropy’ in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).
Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).
Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).
Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Pendry, J. B. & Ramakrishna, S. A. Near-field lenses in two dimensions. J. Phys. Condens. Matter 14, 8463–8479 (2002).
Yang, T., Chen, H. Y., Luo, X. D. & Ma, H. R. Superscatterer: Enhancement of scattering with complementary media. Opt. Express 16, 18545–18550 (2008).
Lai, Y., Chen, H. Y., Zhang, Z. Q. & Chan, C. T. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102, 093901 (2009).
Lai, Y. et al. Illusion optics: The optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009).
Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).
Liu, Z., Chan, C. T. & Sheng, P. Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005).
Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).
Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).
Ding, Y. Q., Liu, Z. Y., Qiu, C. Y. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007).
Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. & Kim, C. K. Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).
Li, J., Fok, L., Yin, X. B., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).
Zhang, S., Yin, L. L. & Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).
Royer, D. & Dieulesaint, E. Elastic Waves in Solids (Springer, 1999).
Tamura, S & Wolfe, J. P. Coupled-mode stop bands of acoustic phonons in semiconductor superlattices. Phys. Rev. B 35, 2528–2531 (1987).
Zhou, X. M. & Hu, G. K. Analytic model of elastic metamaterials with local resonances. Phys. Rev. B 79, 195109 (2009).
Wu, Y., Lai, Y. & Zhang, Z. Q. Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007).
Milton, G. W. New metamaterials with macroscopic behaviour outside that of continuum elastodynamics. New J. Phys. 9, 359 (2007).
Milton, G. W. & Willis, J. R. On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 855–880 (2007).
Willis, J. R. The nonlocal influence of density variations in a composite. Int. J. Solids Struct. 210, 805–817 (1985).
Guenneau, S., Movchan, A., Petursson, G. & Ramakrishna, S. A. Acoustic metamaterials for sound focusing and confinement. New J. Phys. 9, 399 (2007).
Brun, M., Guenneau, S. & Movchan, A. B. Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009).
Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).
Chen, H. Y. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D 43, 113001 (2010).
Acknowledgements
We thank Z. Hang and I. Tsukerman for useful discussions. This work was supported by Hong Kong RGC Grant No. 605008 and RGC Grant HKUST604207.
Author information
Authors and Affiliations
Contributions
Y.L. and Y.W. carried out the research and contributed equally. P.S. and Z-Q.Z. supervised the research and contributed to its design. All the authors discussed the results extensively.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 717 kb)
Rights and permissions
About this article
Cite this article
Lai, Y., Wu, Y., Sheng, P. et al. Hybrid elastic solids. Nature Mater 10, 620–624 (2011). https://doi.org/10.1038/nmat3043
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3043
This article is cited by
-
A reduced-order computational homogenization framework for locally resonant metamaterial structures
Computational Mechanics (2024)
-
Surface Wave Bloch Mode Synthesis for Accelerating the Calculations of Elastic Periodic Structures
Journal of Vibration Engineering & Technologies (2024)
-
Non-reciprocal and non-Newtonian mechanical metamaterials
Nature Communications (2023)
-
Dynamic phononic crystals with spatially and temporally modulated circuit networks
Acta Mechanica Sinica (2023)
-
On-demand inverse design of acoustic metamaterials using probabilistic generation network
Science China Physics, Mechanics & Astronomy (2023)