Arrays of indefinitely long uniform nanowires and nanotubes

An Erratum to this article was published on 23 August 2011

This article has been updated


Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays1,2. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures3,4, their integration and interfacing to macro systems with high yields and repeatability5,6,7 still require elaborate aligning, positioning and interfacing and post-synthesis techniques8,9. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A new nanofabrication technique, based on iterative size reduction, to produce ordered, indefinitely long nanowire and nanotube arrays.
Figure 2: Globally ordered, multimaterial nanowire, nanotube and cylindrical core–shell arrays.
Figure 3: Regular size reduction and ultimate achievable limit with multimaterial iterative size-reduction technique.
Figure 4: Radial and axial uniformity of the nanowire arrays.
Figure 5: Photoconductivity of selenium microwire and nanowire arrays.

Change history

  • 19 July 2011

    In the version of this Letter previously published, the key for Fig. 5c was incorrect. This error has now been corrected in the HTML and PDF versions.


  1. 1

    Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Thelander, C. et al. Nanowire-based one-dimensional electronics. Mater. Today 9, 28–35 (October, 2006).

    CAS  Article  Google Scholar 

  3. 3

    Tian, B., Xie, P., Kempa, T. J., Bell, D. C. & Lieber, C. M. Single crystalline kinked semiconductor nanowire superstructures. Nature Nanotech. 4, 824–829 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Caroff, P., Dick, K. A., Johansson, J., Messing, M. E., Deppert, K. & Samuelson, L. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nature Nanotech. 4, 50–55 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Li, Y., Qian, F., Xiang, J. & Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (October, 2006).

    CAS  Article  Google Scholar 

  6. 6

    Freer, E. M. et al. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature Nanotech. 5, 525–530 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Takei, K. et al. Nanowire active matrix circuitry for low-voltage macro-scale artificial skin. Nature Mater. 9, 821–826 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nature Photon. 3, 569–576 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Yang, P., Yan, R. & Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 10, 1529–1536 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Lieber, C. M. & Wang, Z. H. Functional nanowires. MRS Bull. 32, 99–104 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Jamshidi, A. et al. Dynamic manipulation and separation ofindividual semiconducting and metallic nanowires. Nature Photon. 2, 85–89 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Ahn, J-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Park, W. I. et al. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 8, 3004–3009 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Sazio, P. J. A. et al. Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Suryavanshi, A. P., Hu, J. & Yu, M. F. Meniscus-controlled continuous fabrication of arrays and rolls of extremely long micro- and nano-fibers. Adv. Mater. 20, 793–796 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Martensson, T. et al. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 14, 1255–1258 (2003).

    CAS  Article  Google Scholar 

  19. 19

    McAlpine, M. C., Ahmad, H., Wang, D. W. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater. 6, 379–384 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Bayindir, M. et al. Metal–insulator–semiconductor optoelectronic fibres. Nature 431, 826–829 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Mater. 6, 336–347 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Bayindir, M. et al. Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication. IEEE J. Sel. Quant. Electron. 12, 1202–1213 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Yildirim, A., Vural, M., Yaman, M. & Bayindir, M. Bio-inspired optoelectronic nose with nanostructured wavelength scalable hollow-core infrared fibers. Adv. Mater. 22, 1263 (2011).

    Article  Google Scholar 

  25. 25

    Tong, L. M. et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Zhang, X. J., Ma, Z. Y., Yuan, Z. Y. & Su, M. Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing. Adv. Mater. 20, 1310–1314 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Deng, D. S. et al. Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments. Appl. Phys. Lett. 96, 023102 (2010).

    Article  Google Scholar 

  28. 28

    Deng, D. S. et al. In-fiber semiconductor filament arrays. Nano Lett. 8, 4265–4269 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Donald, I. W. Production, properties and applications of microwire and related products. J. Mater. Science 22, 2661–2679 (1987).

    CAS  Article  Google Scholar 

  30. 30

    Bayindir, M. et al. Thermal-sensing fiber devices by multimaterial codrawing. Adv. Mater. 18, 845–849 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Sun, C. L. et al. Fabrication and characterization of Ni/P(VDF-TrFE) nanoscaled coaxial cables. Appl. Phys. Lett. 90, 253107 (2007).

    Article  Google Scholar 

  32. 32

    Tyagi, H. K. et al. Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Opt. Lett 35, 2573–2575 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Danto, S. et al. Fibre field-effect device via in situ channel crystallization. Adv. Mat. 22, 4162–4166 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Keck, P. A. Photoconductivity in vacuum coated selenium films. J. Opt. Soc. Am. 42, 221–224 (1952).

    CAS  Google Scholar 

  35. 35

    Lee, S. H. et al. Highly-scalable nonvolatile and ultra-low power phase-change nanowire memory. Nature Nanotech. 2, 626–630 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Yu, B. et al. Chalcogenide-nanowire-based phase change memory. IEEE Trans. Nanotech. 7, 496–502 (2008).

    Google Scholar 

  37. 37

    Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Grandidier, J., Callahan, D. M., Munday, J. N. & Atwater, H. A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv. Mater. 23, 1272–1276 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Cao, L. et al. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Vynck, K. et al. All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Eggleton, B. J. et al. Chalcogenide photonics. Nature Photon. 5, 141–148 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Minardi, S. et al. Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. 105, 263901 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Egusa, S. et al. Multimaterial piezoelectric fibres. Nature Mater. 9, 643–648 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Chang, C. et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010).

    CAS  Article  Google Scholar 

Download references


This work was partially supported by the State Planning Organization (DPT) and TUBITAK under project No 106G090. M.B. acknowledges support from the Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA GEBIP).

Author information




M.Y. and M.B. designed and carried out research, analysed data and wrote the paper. M.K., T.K., M.Y., and M.B. carried out fabrication of nanowires and nanotubes. E.O. and O.A. made photoconduction measurements, E.O.O. and H.D. took SEM and transmission electron microscope micrographs and E.K. and M.B. drew schematic representations.

Corresponding author

Correspondence to Mehmet Bayindir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yaman, M., Khudiyev, T., Ozgur, E. et al. Arrays of indefinitely long uniform nanowires and nanotubes. Nature Mater 10, 494–501 (2011).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing