Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials

Abstract

A zero-refractive-index metamaterial is one in which waves do not experience any spatial phase change, and such a peculiar material has many interesting wave-manipulating properties1,2,3,4,5,6,7,8,9,10. These materials can in principle be realized using man-made composites comprising metallic resonators7 or chiral inclusions11,12, but metallic components have losses that compromise functionality at high frequencies. It would be highly desirable if we could achieve a zero refractive index using dielectrics alone. Here, we show that by employing accidental degeneracy, dielectric photonic crystals can be designed and fabricated that exhibit Dirac cone dispersion at the centre of the Brillouin zone at a finite frequency. In addition to many interesting properties intrinsic to a Dirac cone dispersion13,14,15,16,17,18,19, we can use effective medium theory to relate the photonic crystal to a material with effectively zero permittivity and permeability. We then numerically and experimentally demonstrate in the microwave regime that such dielectric photonic crystals with reasonable dielectric constants manipulate waves as if they had near-zero refractive indices at and near the Dirac point frequency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The band structure of a two-dimensional photonic crystal with a square lattice.
Figure 2: Accidental degeneracy conditions and effective parameters from effective medium theory.
Figure 3: Simulations demonstrating that waves can turn through a bent waveguide with and without embedded obstacles.
Figure 4: Microwave experiment to illustrate the cloaking effect.
Figure 5: Simulations and microwave experiment demonstrating waves passing through the PC with almost zero phase change.

Similar content being viewed by others

References

  1. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using É›-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  Google Scholar 

  2. Alu, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Article  Google Scholar 

  3. Silveirinha, M. & Engheta, N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 075119 (2007).

    Article  Google Scholar 

  4. Silveirinha, M. G. & Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using É› near-zero metamaterials. Phys. Rev. B 76, 245109 (2007).

    Article  Google Scholar 

  5. Alu, A., Silveirinha, M. G. & Engheta, N. Transmission-line analysis of É›-near-zero-filled narrow channels. Phys. Rev. E 78, 016604 (2008).

    Article  Google Scholar 

  6. Edwards, B., Alu, A., Silveirinha, M. G. & Engheta, N. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. J. Appl. Phys. 105, 044905 (2009).

    Article  Google Scholar 

  7. Liu, R. et al. Experimental demonstration of electromagnetic tunnelling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 023903 (2008).

    Article  Google Scholar 

  8. Edwards, B., Alu, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Article  Google Scholar 

  9. Hao, J., Yan, W. & Qiu, M. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96, 101109 (2010).

    Article  Google Scholar 

  10. Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    Article  Google Scholar 

  11. Tretyakov, S., Nefedov, I., Sihvola, A., Maslovski, S. & Simovski, C. Wave and energy in chiral nihility. J. Electromagn. Waves Appl. 17, 695–706 (2003).

    Article  Google Scholar 

  12. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  CAS  Google Scholar 

  13. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  14. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  15. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  16. Wang, L. G., Wang, Z. G., Zhang, J. X. & Zhu, S. Y. Realization of Dirac point with double cones in optics. Opt. Lett. 34, 1510–1512 (2009).

    Article  Google Scholar 

  17. Sepkhanov, R. A., Bazaliy, Y. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007).

    Article  Google Scholar 

  18. Zhang, X. Observing zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008).

    Article  Google Scholar 

  19. Diem, M., Koschny, T. & Soukoulis, C. M. Transmission in the vicinity of the Dirac point in hexagonal photonic crystals. Physica B 405, 2990–2995 (2010).

    Article  CAS  Google Scholar 

  20. Plihal, M. & Maradudin, A. A. Photonic band structure of a two-dimensional system: The triangular lattice. Phys. Rev. B 44, 8565–8571 (1991).

    Article  CAS  Google Scholar 

  21. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  CAS  Google Scholar 

  22. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  Google Scholar 

  23. Ochiai, T. & Onoda, M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Phys. Rev. B 80, 155103 (2009).

    Article  Google Scholar 

  24. Wu, Y., Li, J., Zhang, Z. Q. & Chan, C. T. Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit. Phys. Rev. B 74, 085111 (2006).

    Article  Google Scholar 

  25. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon. 3, 461–463 (2009).

    CAS  Google Scholar 

  26. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopulos, N. G. & Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).

    Article  Google Scholar 

  27. Nguyen, V. C., Chen, L. & Halterman, K. Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett. 105, 233908 (2010).

    Article  Google Scholar 

  28. Jin, Y. & He, S. Enhancing and suppressing radiation with some permeability-near-zero structures. Opt. Exp. 18, 16587–16593 (2010).

    Article  CAS  Google Scholar 

  29. Nicorovici, N. A., Mcphedran, R. C. & Botten, L. C. Photonic band gaps for arrays of perfectly conducting cylinders. Phys. Rev. E 52, 1135–1145 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Hong Kong RGC grant 600209. We thank W. J. Wen for providing microwave equipment.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and Y.L. did the calculations, Z.H.H. designed and performed all the experimental measurements, H.Z. helped with the calculations, and C.T.C. conceived the idea and wrote the manuscript.

Corresponding author

Correspondence to C. T. Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1317 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Lai, Y., Hang, Z. et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater 10, 582–586 (2011). https://doi.org/10.1038/nmat3030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing