Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoantenna-enhanced gas sensing in a single tailored nanofocus

Abstract

Metallic nanostructures possess plasmonic resonances that spatially confine light on the nanometre scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm3 or less. This optical nanofocus is ideal for plasmonic sensing. Any object that is brought into this single spot will influence the optical nanostructure resonance with its dielectric properties. Here, we demonstrate antenna-enhanced hydrogen sensing at the single-particle level. We place a single palladium nanoparticle near the tip region of a gold nanoantenna and detect the changing optical properties of the system on hydrogen exposure by dark-field microscopy. Our method avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. Our concept paves the road towards the observation of single catalytic processes in nanoreactors and biosensing on the single-molecule level.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of antenna-enhanced single-particle hydrogen sensing.
Figure 2: Electromagnetic finite-difference time-domain simulation of the local electric fields.
Figure 3: Manufacturing process.
Figure 4: Optical-scattering measurements of a single palladium–gold triangle antenna on hydrogen exposure in dependence on separation d between the gold antenna and the palladium particle.
Figure 5: Optical scattering measurements of a single palladium–gold rod antenna on hydrogen exposure in dependence on the separation d between the gold antenna and the palladium particle.
Figure 6: Control experiments.

References

  1. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Article  Google Scholar 

  2. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  3. Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).

    CAS  Article  Google Scholar 

  4. Stockman, M. I., Faleev, S.V. & Bergman, D. J. Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001).

    CAS  Article  Google Scholar 

  5. Alu, A. & Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photon. 2, 307–310 (2008).

    CAS  Article  Google Scholar 

  6. Shvets, G., Trendafilov, S., Pendry, J. B. & Sarychev, A. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 053903 (2007).

    CAS  Article  Google Scholar 

  7. Becker, J. et al. Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett. 8, 1719–1723 (2008).

    CAS  Article  Google Scholar 

  8. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    CAS  Article  Google Scholar 

  9. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  10. Liao, H. W., Nehl, C. L. & Hafner, J. H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1, 201–208 (2006).

    CAS  Article  Google Scholar 

  11. Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

    Article  Google Scholar 

  12. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  13. Durach, M., Rusina, A. & Stockman, M. I. Toward full spatiotemporal control on the nanoscale. Nano Lett. 7, 3145–3149 (2007).

    CAS  Article  Google Scholar 

  14. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    CAS  Article  Google Scholar 

  15. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  Google Scholar 

  16. Kuhn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  Google Scholar 

  17. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS  Article  Google Scholar 

  18. Camden, J.P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    CAS  Article  Google Scholar 

  19. Lim, D. K., Jeon, K. S., Kim, H. M., Nam, J. M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Mater. 9, 60–67 (2010).

    CAS  Article  Google Scholar 

  20. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    CAS  Article  Google Scholar 

  21. Bharadwaj, P., Beams, R. & Novotny, L. Nanoscale spectroscopy with optical antennas. Chem. Sci. 2, 136–140 (2011).

    CAS  Article  Google Scholar 

  22. Schumacher, Th. et al. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Preprint at arXiv:1104.4855 (2011).

  23. Sondergaard, T. et al. Extraordinary optical transmission enhanced by nanofocusing. Nano Lett. 10, 3123–3128 (2010).

    CAS  Article  Google Scholar 

  24. Chen, C. J. & Osgood, R. M. Direct observation of the local-field-enhanced surface photochemical-reactions. Phys. Rev. Lett. 50, 1705–1708 (1983).

    CAS  Article  Google Scholar 

  25. Zhang, W. H., Huang, L. N., Santschi, C. & Martin, O. J. F. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10, 1006–1011 (2010).

    Article  Google Scholar 

  26. Aimovi, S. S., Kreuzer, M. P., González, M. U. & Quidant, R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3, 1231–1237 (2009).

    Article  Google Scholar 

  27. Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. 106, 19227–19232 (2009).

    CAS  Article  Google Scholar 

  28. Hao, F., Nordlander, P., Sonnefraud, Y., Van Dorpe, P. & Maier, S. A. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 3, 643–652 (2009).

    CAS  Article  Google Scholar 

  29. Khalavka, Y., Becker, J. & Sonnichsen, C. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc. 131, 1871–1875 (2009).

    CAS  Article  Google Scholar 

  30. Reinhard, B. M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P. & Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. 104, 2667–2672 (2007).

    CAS  Article  Google Scholar 

  31. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotech. 3, 598–602 (2008).

    CAS  Article  Google Scholar 

  32. Aksu, S. et al. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy. Nano Lett. 10, 2511–2518 (2010).

    CAS  Article  Google Scholar 

  33. Bingham, J. M., Anker, J. N., Kreno, L. E. & Van Duyne, R. P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132, 17358–17359 (2010).

    CAS  Article  Google Scholar 

  34. Kreno, L. E., Hupp, J. T. & Van Duyne, R. P. Metal–organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82, 8042–8046 (2010).

    CAS  Article  Google Scholar 

  35. Lewis, F. A. The Palladium Hydrogen System (Academic Press, 1967).

    Google Scholar 

  36. Vargas, W. E., Rojas, I., Azofeifa, D. E. & Clark, N. Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements. Thin Solid Films 496, 189–196 (2006).

    CAS  Article  Google Scholar 

  37. Favier, F., Walter, E. C., Zach, M. P., Benter, T. & Penner, R. M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001).

    CAS  Article  Google Scholar 

  38. Walter, E. C., Favier, F. & Penner, R. M. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal. Chem. 74, 1546–1553 (2002).

    CAS  Article  Google Scholar 

  39. Chadwick, B., Tann, J., Brungs, M. & Gal, M. A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sensors Actuators B 17, 215–220 (1994).

    CAS  Article  Google Scholar 

  40. Zeng, X. Q. et al. Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes. Nano Lett. 11, 262–268 (2010).

    Article  Google Scholar 

  41. Zoric, I., Larsson, E. M., Kasemo, B. & Langhammer, C. Localized surface plasmons shed light on nanoscale metal hydrides. Adv. Mater. 22, 4628–4633 (2010).

    CAS  Article  Google Scholar 

  42. Bhuvana, T. & Kulkarni, G. U. A SERS-activated nanocrystalline Pd substrate and its nanopatterning leading to biochip fabrication. Small 4, 670–676 (2008).

    CAS  Article  Google Scholar 

  43. Johnson, J. L., Behnam, A., Pearton, S. J. & Ural, A. Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22, 4877–4880 (2010).

    CAS  Article  Google Scholar 

  44. Yang, F., Kung, S. C., Cheng, M., Hemminger, J. C. & Penner, R. M. Smaller is faster and more sensitive: The effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010).

    CAS  Article  Google Scholar 

  45. Langhammer, C., Yuan, Z., Zoric, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833–838 (2006).

    CAS  Article  Google Scholar 

  46. Langhammer, C., Zoric, I. & Kasemo, B. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett. 7, 3122–3127 (2007).

    CAS  Article  Google Scholar 

  47. Pakizeh, T., Langhammer, C., Zoric, I., Apell, P. & Kall, M. Intrinsic Fano interference of localized plasmons in Pd nanoparticles. Nano Lett. 9, 882–886 (2009).

    CAS  Article  Google Scholar 

  48. Larsson, E. M., Langhammer, C., Zoric, I. & Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 326, 1091–1094 (2009).

    CAS  Article  Google Scholar 

  49. Langhammer, C., Larsson, E. M., Kasemo, B. & Zoric, I. Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett. 10, 3529–3538 (2010).

    CAS  Article  Google Scholar 

  50. Langhammer, C., Zhdanov, V. P., Zoric, I. & Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104, 135502 (2010).

    Article  Google Scholar 

  51. Abdelsalam, M. E., Mahajan, S., Bartlett, P. N., Baumberg, J. J. & Russell, A. E. SERS at structured palladium and platinum surfaces. J. Am. Chem. Soc. 129, 7399–7406 (2007).

    CAS  Article  Google Scholar 

  52. Wu, D. Y., Li, J. F., Ren, B. & Tian, Z. Q. Electrochemical surface-enhanced raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    CAS  Article  Google Scholar 

  53. Roy, R., Hohng, S. C. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008).

    CAS  Article  Google Scholar 

  54. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008).

    CAS  Article  Google Scholar 

  55. Tian, Z. Q., Ren, B. & Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106, 9463–9483 (2002).

    CAS  Article  Google Scholar 

  56. Langhammer, C., Zhdanov, V. P., Zoric, I. & Kasemo, B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem. Phys. Lett. 488, 62–66 (2010).

    CAS  Article  Google Scholar 

  57. Sachs, C. et al. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 64, 075408 (2001).

    Article  Google Scholar 

  58. Hughes, R. C. & Schubert, W. K. Thin-films of Pd/Ni alloys for detection of high hydrogen concentrations. J. Appl. Phys. 71, 542–544 (1992).

    CAS  Article  Google Scholar 

  59. Trapp, O. et al. High-throughput kinetic study of hydrogenation over palladium nanoparticles: Combination of reaction and analysis. Chem. Eur. J. 14, 4657–4666 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank X. Meng for help with the metal deposition at the Microlab Facility of the Electrical Engineering and Computer Science Department, University of California, Berkeley. The SEM studies were supported by the Molecular Foundry at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory. The experimental set-up was funded by the grant “A Synergistic Approach to the Development of New Classes of Hydrogen Storage Materials” from the US Department of Energy, DE-AC03-76SF00098. We acknowledge S. Hein for his material visualizations. We thank Th. Schumacher and M. Lippitz for discussions and comments. We thank A. Tittl and N. Strohfeldt for help with the measurements and data analysis. N.L., M.L.T. and A.P.A. acknowledge financial support through the Plasmonic-Enhanced Catalysis Project of the Air Force Office of Science Research, award number FA9550-10-1-0504. M.H. and H.G. were financially supported by Deutsche Forschungsgemeinschaft (SPP1391 and FOR557), by BMBF (13N9048 and 13N10146) and by Landesstiftung BW.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to A. Paul Alivisatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, N., Tang, M., Hentschel, M. et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater 10, 631–636 (2011). https://doi.org/10.1038/nmat3029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3029

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing