Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices

Abstract

In an ideal model, a p–n junction is formed by two stacked slabs of semiconductors. Although the construction of actual devices is generally more complex, we show that such a simple method can in fact be applied to the formation of organic heterojunctions. Two films of the organic semiconductors poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) can be connected by a simple film-transfer method without disturbing their flat surfaces. Each film can further be modified with a surface-segregated monolayer to tune the strength and direction of the surface dipole moment. Using this method, we fabricated bilayer organic photovoltaic devices with interfacial dipole moments that were selected to align the energy levels at the heterojunction. The open-circuit voltages of the P3HT/PCBM devices could be tuned over a wide range between 0.3 and 0.95 V, indicating that, even if the same combination of bulk materials is used, the interfacial properties drastically alter the performance of organic photovoltaic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation and energy diagrams of the P3HT/PCBM bilayer devices.
Figure 2: Chemical structures of the materials used and schematic representations of the insertion of the SSM.
Figure 3: JV characteristics under 100 mW cm−2, AM1.5 irradiation of three types of bilayer device fabricated by the CFT method.
Figure 4: UPS spectra for the four types of film using He(I) irradiation.

Similar content being viewed by others

References

  1. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  2. Zhu, X. Y. & Kahn, A. Electronic structure and dynamics at organic donor/acceptor interfaces. MRS Bull. 35, 443–448 (2010).

    Article  CAS  Google Scholar 

  3. Gregg, B. A. & Hanna, M. C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 93, 3605–3614 (2003).

    Article  CAS  Google Scholar 

  4. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  5. Rand, B. P., Burk, D. P. & Forrest, S. R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 75, 115327–115337 (2007).

    Article  Google Scholar 

  6. Gadisa, A., Svensson, M., Andersson, M. R. & Inganäs, O. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl. Phys. Lett. 84, 1609–1611 (2004).

    Article  CAS  Google Scholar 

  7. Potscavage, W. J., Sharma, A. & Kippelen, B. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758–1767 (2009).

    Article  CAS  Google Scholar 

  8. Yim, K. H. et al. Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique. Adv. Funct. Mater. 18, 1012–1019 (2008).

    Article  CAS  Google Scholar 

  9. Chen, L. C., Degenaar, P. & Bradley, D. D. C. Polymer transfer printing: Application to layer coating, pattern definition, and diode dark current blocking. Adv. Mater. 20, 1679–1683 (2008).

    Article  CAS  Google Scholar 

  10. Huang, J. H. et al. Fabrication of multilayer organic solar cells through a stamping technique. J. Mater. Chem. 19, 4077–4080 (2009).

    Article  CAS  Google Scholar 

  11. Nakamura, M., Yang, C. H., Tajima, K. & Hashimoto, K. High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination. Sol. Energy Mater. Sol. Cells 93, 1681–1684 (2009).

    Article  CAS  Google Scholar 

  12. Nakamura, M., Yang, C. H., Zhou, E. J., Tajima, K. & Hashimoto, K. Polymer bulk heterojunction photovoltaic devices with multilayer structures prepared by thermal lamination. ACS Appl. Mater. Interfaces 1, 2703–2706 (2009).

    Article  CAS  Google Scholar 

  13. Wang, D. H. et al. Unexpected solid–solid intermixing in a bilayer of poly(3-hexylthiophene) and 6,6-phenyl C61-butyric acidmethyl ester via stamping transfer. Org. Electron. 11, 1376–1380 (2010).

    Article  CAS  Google Scholar 

  14. Wang, D. H., Choi, D. G., Lee, K. J., Park, O. O. & Park, J. H. Photovoltaic devices with an active layer from a stamping transfer technique: Single layer versus double layer. Langmuir 26, 9584–9588 (2010).

    Article  CAS  Google Scholar 

  15. Wei, Q. S., Tajima, K. & Hashimoto, K. Bilayer ambipolar organic thin-film transistors and inverters prepared by the contact-film-transfer method. ACS Appl. Mater. Interfaces 1, 1865–1868 (2009).

    Article  CAS  Google Scholar 

  16. Wei, Q. S., Miyanishi, S., Tajima, K. & Hashimoto, K. Enhanced charge transport in polymer thin-film transistors prepared by contact film transfer method. ACS Appl. Mater. Interfaces 1, 2660–2666 (2009).

    Article  CAS  Google Scholar 

  17. Wei, Q. S., Tajima, K. & Hashimoto, K. Electrical instability of polymer thin-film transistors using contact film transfer methods. Appl. Phys. Lett. 96, 243301–243303 (2010).

    Article  Google Scholar 

  18. Hao, X. T. et al. Control of the interchain π–π interaction and electron density distribution at the surface of conjugated poly(3-hexylthiophene) thin films. J. Phys. Chem. B 111, 10365–10372 (2007).

    Article  CAS  Google Scholar 

  19. Ayzner, A. L., Tassone, C. J., Tolbert, S. H. & Schwartz, B. J. Reappraising the need for bulk heterojunctions in polymer–fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 113, 20050–20060 (2009).

    Article  CAS  Google Scholar 

  20. Wei, Q. S., Nishizawa, T., Tajima, K. & Hashimoto, K. Self-organized buffer layers in organic solar cells. Adv. Mater. 20, 2211–2216 (2008).

    Article  CAS  Google Scholar 

  21. Yamakawa, S., Tajima, K. & Hashimoto, K. Buffer layer formation in organic photovoltaic cells by self-organization of poly(dimethylsiloxane)s. Org. Electron. 10, 511–514 (2009).

    Article  CAS  Google Scholar 

  22. Wei, Q. S., Tajima, K., Tong, Y. J., Ye, S. & Hashimoto, K. Surface-segregated monolayers: A new type of ordered monolayer for surface modification of organic semiconductors. J. Am. Chem. Soc. 131, 17597–17604 (2009).

    Article  CAS  Google Scholar 

  23. Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    Article  CAS  Google Scholar 

  24. Kim, S. S., Na, S. I., Jo, J., Tae, G. & Kim, D. Y. Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19, 4410–4415 (2007).

    Article  CAS  Google Scholar 

  25. Ferenczi, T. A. M. et al. Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process. J. Phys.: Condens. Matter 20, 8 (2008).

    Google Scholar 

  26. Collins, B. A. et al. Molecular miscibility of polymer–fullerene blends. J. Phys. Chem. Lett. 1, 3160–3166 (2010).

    Article  CAS  Google Scholar 

  27. Yan, H. et al. Influence of annealing and interfacial roughness on the performance of bilayer donor/acceptor polymer photovoltaic devices. Adv. Funct. Mater. 20, 4329–4337 (2010).

    Article  CAS  Google Scholar 

  28. Treat, N. D. et al. Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Adv. Energy Mater. 1, 82–89 (2011).

    Article  CAS  Google Scholar 

  29. Chen, D. A., Nakahara, A., Wei, D. G., Nordlund, D. & Russell, T. P. P3HT/PCBM bulk heterojunction organic photovoltaics: Correlating efficiency and morphology. Nano Lett. 11, 561–567 (2011).

    Article  CAS  Google Scholar 

  30. Lee, K. H. et al. Morphology of all-solution-processed ‘bilayer’ organic solar cells. Adv. Mater. 23, 766–770 (2011).

    Article  CAS  Google Scholar 

  31. Perez, M. D., Borek, C., Forrest, S. R. & Thompson, M. E. Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. J. Am. Chem. Soc. 131, 9281–9286 (2009).

    Article  CAS  Google Scholar 

  32. Duhm, S. et al. Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nature Mater. 7, 326–332 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.F.G. thanks the Chinese Scholarship Council for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.T. and Y.F.G. contributed equally to this work. A.T. fabricated and evaluated the OPV devices and carried out the external quantum efficiency, XPS, UPS and X-ray reflectivity measurements. Y.F.G. synthesized and characterized the P3DDFT and carried out the XPS depth profile measurements. Q.S.W. synthesized and characterized the FC8. K.H. and K.T. directed the research. A.T., K.H. and K.T. wrote the paper.

Corresponding authors

Correspondence to Kazuhito Hashimoto or Keisuke Tajima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 873 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, A., Geng, Y., Wei, Q. et al. Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nature Mater 10, 450–455 (2011). https://doi.org/10.1038/nmat3026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing