Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast current-induced domain-wall motion controlled by the Rashba effect

Abstract

The propagation of magnetic domain walls induced by spin-polarized currents1,2,3,4,5 has launched new concepts for memory and logic devices6,7,8. A wave of studies focusing on permalloy (NiFe) nanowires9 has found evidence for high domain-wall velocities (100 m s−1; refs 10, 11), but has also exposed the drawbacks of this phenomenon for applications. Often the domain-wall displacements are not reproducible12, their depinning from a thermally stable position is difficult13 and the domain-wall structural instability (Walker breakdown14,15) limits the maximum velocity10. Here, we show that the combined action of spin-transfer and spin–orbit torques offers a comprehensive solution to these problems. In an ultrathin Co nanowire, integrated in a trilayer with structural inversion asymmetry (SIA), the high spin-torque efficiency16 facilitates the depinning and leads to high mobility, while the SIA-mediated Rashba field17,18,19 controlling the domain-wall chirality stabilizes the Bloch domain-wall structure. Thus, the high-mobility regime is extended to higher current densities, allowing domain-wall velocities up to 400 m s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of magnetic field and electric current on domain walls.
Figure 2: Current-induced domain-wall displacements observed by Kerr microscopy.
Figure 3: Domain-wall velocity induced by current or field in the PtCoAlOx layers.
Figure 4: Domain-wall chirality reversal induced by HR .

Similar content being viewed by others

References

  1. Vernier, N., Allwood, D. A., Atkinson, D., Cooke, M. D. & Cowburn, R. P. Domain wall propagation in magnetic nanowires by spin-polarized current injection. Europhys. Lett. 65, 526–532 (2004).

    Article  CAS  Google Scholar 

  2. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  CAS  Google Scholar 

  3. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  CAS  Google Scholar 

  4. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article  Google Scholar 

  5. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  CAS  Google Scholar 

  6. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  7. Hayashi, M., Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008).

    Article  CAS  Google Scholar 

  8. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  9. Beach, G. S. D., Tsoi, M. & Erskine, J. L. Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008).

    Article  CAS  Google Scholar 

  10. Hayashi, M. et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98, 037204 (2007).

    Article  Google Scholar 

  11. Meier, G. et al. Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys. Rev. Lett. 98, 187202 (2007).

    Article  Google Scholar 

  12. Kläui, M. et al. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 95, 026601 (2005).

    Article  Google Scholar 

  13. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

    Article  Google Scholar 

  14. Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nature Mater. 4, 741–744 (2005).

    Article  CAS  Google Scholar 

  15. Schryer, N. L. & Walker, L. R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5420 (1974).

    Article  CAS  Google Scholar 

  16. Miron, I. M. et al. Domain wall spin torquemeter. Phys. Rev. Lett. 102, 137202 (2009).

    Article  CAS  Google Scholar 

  17. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  18. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  19. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  Google Scholar 

  20. Moore, T. A. et al. Scaling of spin relaxation and angular momentum dissipation in permalloy nanowires. Phys. Rev. B 80, 132403 (2009).

    Article  Google Scholar 

  21. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197–200 (2006).

    Article  CAS  Google Scholar 

  22. Bryan, M. T., Schrefl, T., Atkinson, D. & Allwood, D. A. Magnetic domain wall propagation in nanowires under transverse magnetic fields. J. Appl. Phys. 103, 073906 (2008).

    Article  Google Scholar 

  23. Kunz, A. & Reiff, S. C. Fast domain wall motion in nanostripes with out-of-plane fields. Appl. Phys. Lett. 93, 082503 (2008).

    Article  Google Scholar 

  24. Lewis, E. R. et al. Fast domain wall motion in magnetic comb structures. Nature Mater. 9, 980–983 (2010).

    Article  CAS  Google Scholar 

  25. Beach, G. Spintronics: Beyond the speed limit. Nature Mater. 9, 959–960 (2010).

    Article  CAS  Google Scholar 

  26. Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article  CAS  Google Scholar 

  27. Burrowes, C. et al. Role of pinning in current driven domain wall motion in wires with perpendicular anisotropy. Appl. Phys. Lett. 93, 172513 (2008).

    Article  Google Scholar 

  28. Obata, K. & Tatara, G. Current-induced domain wall motion in Rashba spin–orbit system. Phys. Rev. B 77, 214429 (2008).

    Article  Google Scholar 

  29. Beaujour, J. M. L. et al. Ferromagnetic resonance study of sputtered CoNi multilayers. Eur. Phys. J. B 59, 475–483 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Gambardella for critically reading the manuscript and useful discussions. This work was partially supported by the ANR-07-NANO-034 ‘Dynawall’ project and ERC (StG 203239). Samples were patterned at the NANOFAB facility of the Institut Néel (CNRS). The micromagnetic simulations were carried out using the Gilbert–Landau Fast Fourier Transform code initially developed by J.C. Toussaint.

Author information

Authors and Affiliations

Authors

Contributions

I.M.M., T.M., A.S. and G.G. designed the experiment; I.M.M., G.G., S.A. and B.R. fabricated the samples. I.M.M. and T.M. carried out the experiments assisted by S.P., J.V., M.B. and G.G; I.M.M., T.M. and G.G analysed the data and wrote the manuscript; H.S. and L.D.B-P. carried out the micromagnetic simulations. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ioan Mihai Miron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 991 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miron, I., Moore, T., Szambolics, H. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater 10, 419–423 (2011). https://doi.org/10.1038/nmat3020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing