Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance flat-panel solar thermoelectric generators with high thermal concentration

Abstract

The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m−2) conditions. The efficiency is 7–8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a STEG cell.
Figure 2: STEG cell performance characteristics.
Figure 3: Performance under varying ambient conditions.
Figure 4: Directions for improvement.

Similar content being viewed by others

References

  1. Lewis, N. et al. Basic Research Needs for Solar Energy Utilization. (DOE Office of Science, 2005); available at http://www.er.doe.gov/bes/reports/abstracts.html.

  2. Luque, A. & Hegedus, S. Handbook of Phovoltaic Science and Engineering (Wiley, 2003).

    Book  Google Scholar 

  3. Green, M. A. Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2003).

    Google Scholar 

  4. Mills, D. Advances in solar thermal electricity technology. Sol. Energy 76, 19–31 (2004).

    Article  Google Scholar 

  5. Roeb, M. & Muller-Steinhagen, H. Concentrating on solar electricity and fuels. Science 329, 773–774 (2010).

    Article  CAS  Google Scholar 

  6. Goldsmid, H. J. Thermoelectric Refrigeration (Plenum, 1964).

    Book  Google Scholar 

  7. Rowe, D. M. Thermoelectrics Handbook Nano to Macro (CRC Taylor & Francis, 2006).

    Google Scholar 

  8. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  9. Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  10. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  11. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  12. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  13. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    Article  CAS  Google Scholar 

  14. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  CAS  Google Scholar 

  15. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Article  CAS  Google Scholar 

  16. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  17. Rhyee, J-S. et al. Peierls distortion as a route to high thermoelectric performance in In4Se3-delta crystals. Nature 459, 965–968 (2009).

    Article  CAS  Google Scholar 

  18. Zhao, X. B. et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  19. Tang, X. F. et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  20. Tritt, T. M. & Subramanian, M. A. (eds) Energy harvesting through thermoelectrics: Power generation and cooling. MRS Bull. 31, 188–194 (2006).

    Article  Google Scholar 

  21. Vining, C. B. An inconvenient truth about thermoelectrics. Nature Mater. 8, 83–85 (2009).

    Article  CAS  Google Scholar 

  22. Yang, J. H. & Stabler, F. R. Automotive applications of thermoelectric materials. J. Electron. Mater. 38, 1245–1251 (2009).

    Article  CAS  Google Scholar 

  23. Bell, L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  24. Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 25, 765–777 (1954).

    Article  CAS  Google Scholar 

  25. Tobias, I. & Luque, A. Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux. IEEE Trans. Electron Devices 49, 2024–2030 (2002).

    Article  Google Scholar 

  26. Goldsmid, H. J., Giutronich, J. E. & Kaila, M. M. Solar thermoelectric generation using bismuth telluride alloys. Sol. Energy 24, 435–440 (1980).

    Article  CAS  Google Scholar 

  27. Rush, R. Solar Flat Plate Thermoelectric Generator Research. Tech. Doc. Rep. Air Force AD 605931 (General Electric Corp., 1964).

  28. Dent, C. L. & Cobble, M. H. Proc. 4th Int. Conf. on Thermoelectric Energy Conversion 75–78 (IEEE, 1982).

    Google Scholar 

  29. Mgbemene, C. A., Duffy, J., Sun, H. & Onyegegbu, S. O. ASME Conf. Proc. ES2008 (ASME, 2008).

    Google Scholar 

  30. Li, P. et al. Design of a concentration solar thermoelectric generator. J. Electron. Mater. 39, 1522–1530 (2010).

    Article  CAS  Google Scholar 

  31. Fuschillo, N. & Gibson, R. Germanium-silicon, lead telluride, and bismuth telluride alloy solar thermoelectric generators for venus and mercury probes. Adv. Energy Conversion 7, 43–52 (1967).

    Article  CAS  Google Scholar 

  32. Raag, V., Berlin, R. E., Bifano, & Bifano, W. J. Intersociety Energy Conversion Engineering Conf. (1968).

    Google Scholar 

  33. Scherrer, H., Vikhor, L., Lenior, B., Dauscher, A. & Poinas, P. Solar thermolectric generator based on skutterudites. J. Power Source 115, 141–148 (2003).

    Article  CAS  Google Scholar 

  34. Yin, Z. Q. Development of solar thermal systems in China. Sol. Energy Mater. Sol. Cells 86, 427–442 (2005).

    Article  CAS  Google Scholar 

  35. Weiss, W., Bergmann, I. & Stelzer, R. Solar Heat Worldwide, Markets and Contribution to the Energy Supply 2007 (International Energy Agency, 2009).

    Google Scholar 

  36. Wang, S., Xie, W., Li, H. & Tang, X. High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator. J. Phys. D 43, 335404 (2010).

    Article  Google Scholar 

  37. Xie, W., Tang, X., Yan, Y., Zhang, Q. & Tritt, T. M. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  38. Bulat, L. P. et al. Bulk nanostructured polycrystalline p–Bi–Sb–Te thermoelectrics obtained by mechanical activation method with hot pressing. J. Electron. Mater. 39, 1650–1653 (2010).

    Article  CAS  Google Scholar 

  39. Ma, Y. et al. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580–2584 (2008).

    Article  CAS  Google Scholar 

  40. Yan, X. et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3 . Nano Lett. 10, 3373–3378 (2010).

    Article  CAS  Google Scholar 

  41. Muto, A., Kraemer, D., Hao, Q., Ren, Z. F. & Chen, G. Thermoelectric properties and efficiency measurements under large temperature differences. Rev. Sci. Instrum. 80, 093901 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is partially based on work supported as part of the ‘Solid State Solar-Thermal Energy Conversion Center (S3TEC)’, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number: DE-SC0001299/DE-FG02-09ER46577 (G.C. and Z.F.R.) and MIT-Masdar program (G.C. and M.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.K. carried out modelling and simulation, initial STEG-efficiency experiments, and contributed to the manuscript preparation; B.P. conducted the experiments reported in the paper; H-P.F., J.C.C. and B.Y. contributed to the development of electrical contacts used for devices; X.Y. made the n-type TE elements; Y.M. fabricated the devices; X.W. prepared the absorbers; D.W. assisted in making the TE elements and electrical contacts; A.M. performed device testing; K.M. participated in device modelling and manuscript preparation; M.C. contributed to research planning and student (D.K.) supervision; Z.F.R. directed materials and device research at BC, and contributed to manuscript preparation; G.C. originated the idea and contributed to the manuscript preparation, in addition to directing research at MIT.

Corresponding authors

Correspondence to Zhifeng Ren or Gang Chen.

Ethics declarations

Competing interests

Z.F.R. and G.C. are co-founders of GMZ Energy.

Supplementary information

Supplementary Information

Supplementary Information (PDF 751 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer, D., Poudel, B., Feng, HP. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Mater 10, 532–538 (2011). https://doi.org/10.1038/nmat3013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing