Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A smooth future?

Research on superhydrophobic materials has mostly focused on their extreme non-wettability. However, the implications of superhydrophobicity beyond wetting, in particular for transport phenomena, remain largely unexplored.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron microscopy images of four superhydrophobic materials with different structures.
Figure 2: Self-controlled Wenzel-to-Cassie transition induced using electrolysis.
Figure 3: Multiple length scales relevant to the fluid dynamics over a patterned superhydrophobic surface.
Figure 4: Splash of a macroscopic bead impacting water at high velocity.

References

  1. Quéré, D. Rep. Prog. Phys. 68, 2495–2532 (2005).

    Article  Google Scholar 

  2. de Gennes, P. G. Rev. Mod. Phys. 57, 827–863, (1985).

    Article  CAS  Google Scholar 

  3. Onda, T. et al. Langmuir 12, 2125–2127 (1996).

    Article  CAS  Google Scholar 

  4. Neinhuis, C. & Barthlott, W. Ann. Bot. 79, 667–677 (1997).

    Article  Google Scholar 

  5. Bico, J., Marzolin, C. & Quéré, D. Europhys. Lett. 47, 220–226 (1999).

    Article  CAS  Google Scholar 

  6. Roach, P., Shirtcliffe, N. J. & Newton, M. I. Soft Matter 4, 224–240 (2008).

    Article  CAS  Google Scholar 

  7. Krupenkin, T. N. et al. Langmuir 20, 3824–3827 (2004).

    Article  CAS  Google Scholar 

  8. Quéré, D. Annu. Rev. Fluid Mech. 38, 71–99 (2008).

    Google Scholar 

  9. Sbragaglia, M. et al. Phys. Rev. Lett. 99, 156001 (2007).

    Article  Google Scholar 

  10. Lee, C. & Kim, C-J. Langmuir 25, 12812–12818 (2009).

    Article  CAS  Google Scholar 

  11. Steinberger, A. et al. Nature Mater. 6, 665–668 (2007).

    Article  CAS  Google Scholar 

  12. Davis, A. M. J. & Lauga, E. Phys. Fluids 21, 011701 (2009).

    Article  Google Scholar 

  13. Boreyko, J. B. & Chen, C. H. Phys. Rev. Lett. 103, 174502 (2009).

    Article  Google Scholar 

  14. Lee, C. & Kim, C-J. Phys. Rev. Lett. 106, 014502 (2010).

    Article  Google Scholar 

  15. Tuteja, A. et al. Science 318, 1618–1622 (2007).

    Article  CAS  Google Scholar 

  16. Bonn, D. et al. Rev. Mod. Phys. 81, 739–805 (2008).

    Article  Google Scholar 

  17. Rathgen, H. et al. Phys. Rev. Lett. 99, 214501 (2007).

    Article  Google Scholar 

  18. Lauga, E., Brenner, M. P. & Stone, H. A. in Handbook of Experimental Fluid Dynamics (eds Tropea, C., Yarin, A. L. & Foss, J. F.) 1219–1240 (Springer, 2007).

    Google Scholar 

  19. Bocquet, L. & Barrat, J-L. Soft Matter 3, 685–693 (2007).

    Article  CAS  Google Scholar 

  20. Rothstein, J. P. Annu. Rev. Fluid Mech. 42, 89–109 (2010).

    Article  Google Scholar 

  21. Jayashree, R. S. et al. J. Power Sources 195, 3569–3578 (2010).

    Article  CAS  Google Scholar 

  22. Ajdari, A. & Bocquet, L. Phys. Rev. Lett. 96, 186102 (2006).

    Article  Google Scholar 

  23. Squires, T. M. Phys. Fluids 20, 092105 (2008).

    Article  Google Scholar 

  24. Pennathur, S., Eijkel, J. C. T. & van den Berg, A. Lab Chip 7, 1234 (2007).

    Article  Google Scholar 

  25. Huang, D. et al. Phys. Rev. Lett. 101, 064503 (2008).

    Article  Google Scholar 

  26. Patankar, N. A. Soft Matter 6, 1613–1620 (2010).

    Article  CAS  Google Scholar 

  27. Legendre, D., Lauga, E. & Magnaudet, J. J. Fluid Mech. 633, 437–447 (2009).

    Article  Google Scholar 

  28. Duez, C., Ybert, C., Clanet, C. & Bocquet, L. Nature Phys. 3, 180–183 (2007).

    Article  CAS  Google Scholar 

  29. Duez, C., Ybert, C., Clanet, C. & Bocquet, L. Phys. Rev. Lett. 104, 084503 (2010).

    Article  Google Scholar 

  30. Dressaire, E., Courbin, L., Crest, J. & Stone, H. A. Phys. Rev. Lett. 102, 194503 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank C. Clanet, C-J. Kim, J. Rothstein and the Liquid at Interfaces group (LPMCN) for useful discussions. This work was supported in part by the Agence Nationale de la Recherche (France) and the National Science Foundation (USA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lydéric Bocquet or Eric Lauga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocquet, L., Lauga, E. A smooth future?. Nature Mater 10, 334–337 (2011). https://doi.org/10.1038/nmat2994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing