Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents


Optically active nanomaterials promise to advance a range of biophotonic techniques through nanoscale optical effects and integration of multiple imaging and therapeutic modalities. Here, we report the development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties. Porphysomes enabled the sensitive visualization of lymphatic systems using photoacoustic tomography. Near-infrared fluorescence generation could be restored on dissociation, creating opportunities for low-background fluorescence imaging. As a result of their organic nature, porphysomes were enzymatically biodegradable and induced minimal acute toxicity in mice with intravenous doses of 1,000 mg kg−1. In a similar manner to liposomes, the large aqueous core of porphysomes could be passively or actively loaded. Following systemic administration, porphysomes accumulated in tumours of xenograft-bearing mice and laser irradiation induced photothermal tumour ablation. The optical properties and biocompatibility of porphysomes demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Porphysomes are optically active nanovesicles formed from porphyrin bilayers.
Figure 2: Porphysomes demonstrate extensive and structurally driven self-quenching.
Figure 3: Multimodal optical utility of porphysomes.
Figure 4: Porphysomes are enzymatically biodegradable and well tolerated in vivo.
Figure 5: Active and passive loading of porphysomes.
Figure 6: Porphysomes as photothermal therapy agents.


  1. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  2. Storhoff, J. J., Lucas, A. D., Garimella, V., Bao, Y. P. & Müller, U. R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature Biotechnol. 22, 883–887 (2004).

    Article  CAS  Google Scholar 

  3. Dolmans, D. E., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nature Rev. Cancer 3, 380–387 (2003).

    Article  CAS  Google Scholar 

  4. O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumour ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).

    Article  Google Scholar 

  5. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  6. Oraevsky, A. A. Laser optoacoustic tomography for medical diagnostics: Principles. Proc. SPIE 2676, 22–31 (1996).

    Article  Google Scholar 

  7. Oraevsky, A. A. & Karabutov, A. A. in Biomedical Photonics Handbook 2003 edn (ed. Vo-Dinh, T.) 34.1–34.34 (CRC Press, 2003).

    Google Scholar 

  8. Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006).

    Article  Google Scholar 

  9. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nature Photon. 3, 503–509 (2009).

    Article  CAS  Google Scholar 

  10. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med. 15, 1219–1223 (2009).

    Article  CAS  Google Scholar 

  11. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  Google Scholar 

  12. Klostranec, J. M. & Chan, W. Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv. Mater. 18, 1953–1964 (2006).

    Article  CAS  Google Scholar 

  13. Yguerabide, J. & Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Anal. Biochem. 262, 137–156 (1998).

    Article  CAS  Google Scholar 

  14. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  15. Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug. Deliv. Rev. 60, 1307–1315 (2008).

    Article  CAS  Google Scholar 

  16. Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small 4, 26–49 (2008).

    Article  CAS  Google Scholar 

  17. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  18. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  19. Drain, C. M., Varotto, A. & Radivojevic, I. Self-organized porphyrinic materials. Chem. Rev. 109, 1630–1658 (2009).

    Article  CAS  Google Scholar 

  20. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug Discov. 2, 214–221 (2003).

    Article  CAS  Google Scholar 

  21. Pasternack, R. F. & Collings, P. J. Resonance light scattering: A new technique for studying chromophore aggregation. Science 269, 935–939 (1995).

    Article  CAS  Google Scholar 

  22. Nagayasu, A., Uchiyama, K. & Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumour drugs. Adv. Drug Deliv. Rev. 40, 75–87 (1999).

    Article  CAS  Google Scholar 

  23. Huang, L., Sullenger, B. & Juliano, R. The role of carrier size in the pharmacodynamics of antisense and siRNA oligonucleotides. J. Drug Target. 18, 567–574 (2010).

    Article  CAS  Google Scholar 

  24. Hansen, C. B., Kao, G. Y., Moase, E. H., Zalipsky, S. & Allen, T. M. Attachment of antibodies to sterically stabilized liposomes: Evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta 1239, 133–144 (1995).

    Article  Google Scholar 

  25. Lovell, J. F., Liu, T. W. B., Chen, J. & Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

    Article  CAS  Google Scholar 

  26. Chen, B., Pogue, B. W. & Hasan, T. Liposomal delivery of photosensitising agents. Expert Opin. Drug Deliv. 2, 477–487 (2005).

    Article  CAS  Google Scholar 

  27. Komatsu, T., Moritake, M., Nakagawa, A. & Tsuchida, E. Self-organized lipid-porphyrin bilayer membranes in vesicular form: Nanostructure, photophysical properties, and dioxygen coordination. Chem. Eur. J. 8, 5469–5480 (2002).

    Article  CAS  Google Scholar 

  28. Ghoroghchian, P. P. et al. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc. Natl Acad. Sci. USA 102, 2922–2927 (2005).

    Article  CAS  Google Scholar 

  29. Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nature Nanotech. 4, 855–860 (2009).

    Article  CAS  Google Scholar 

  30. Galanzha, E. I. et al. In vivo fibre-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J. Biophoton. 2, 528–539 (2009).

    Article  CAS  Google Scholar 

  31. Lee, R. J. & Low, P. S. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem. 269, 3198–3204 (1994).

    CAS  Google Scholar 

  32. Park, J. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    Article  CAS  Google Scholar 

  33. Suzuki, Y., Tanabe, K. & Shioi, Y. Determination of chemical oxidation products of chlorophyll and porphyrin by high-performance liquid chromatography. J. Chromatogr. A 839, 85–91 (1999).

    Article  CAS  Google Scholar 

  34. Kirby, C., Clarke, J. & Gregoriadis, G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 186, 591–598 (1980).

    Article  CAS  Google Scholar 

  35. Haran, G., Cohen, R., Bar, L. K. & Barenholz, Y. Transmembrane ammonium sulphate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1151, 201–215 (1993).

    Article  CAS  Google Scholar 

  36. Ahmed, F. et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharm. 3, 340–350 (2006).

    Article  CAS  Google Scholar 

  37. Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011).

    Article  CAS  Google Scholar 

  38. von Maltzahn, G. et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009).

    Article  CAS  Google Scholar 

  39. Chen, J. et al. Gold nanocages as photothermal transducers for cancer treatment. Small 6, 811–817 (2010).

    Article  CAS  Google Scholar 

  40. Yang, K. et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010).

    Article  CAS  Google Scholar 

  41. Wilson, B. C. & Patterson, M. S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 53, R61–R109 (2008).

    Article  CAS  Google Scholar 

Download references


We thank B. G. Neel for editing, B. C. Wilson and C. M. Yip for insightful discussion, P. V. Turner for histopathology analysis, and E. Kumacheva and L. Tzadu for providing gold nanorods. This work was supported by grants from the Ontario Institute for Cancer Research, the Canadian Cancer Society, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute of Health Research, the Canadian Foundation of Innovation, the Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research, and in part from the Campbell Family Institute for Cancer Research, the Princess Margaret Hospital Foundation and the Ministry of Health and Long-Term Planning.

Author information

Authors and Affiliations



J.F.L. and G.Z. conceived the project, interpreted the data and wrote the manuscript. J.F.L., W.C.W.C. and G.Z. planned the experiments. C.S.J. and J.F.L. carried out photothermal tumour ablation. C.S.J. carried out confocal microscopy. E.H. and J.F.L. carried out most porphysome formation, photophysical characterization and drug encapsulation. H.J. and J.F.L. carried out toxicity experiments. J.L.R. carried out electron microscopy. C.K and L.V.W. carried out the photoacoustic experiments. W.C. and J.F.L. prepared the porphysome starting materials.

Corresponding authors

Correspondence to Jonathan F. Lovell or Gang Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1453 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lovell, J., Jin, C., Huynh, E. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater 10, 324–332 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing