Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles

Abstract

Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal–oxide interactions usually remain obscure. This study identifies two types of oxidative metal–oxide interaction on well-defined models of technologically important Pt–ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt–O species on ceria and to elucidate the extraordinary structure–activity dependence of ceria-based catalysts in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metal–oxide interaction in Pt–CeO2: electron transfer.
Figure 2: Metal–oxide interaction in Pt–CeO2: oxygen release and reverse spillover.
Figure 3: Experimental verification of the two types of metal–oxide interaction.

Similar content being viewed by others

References

  1. Ertl, G., Knözinger, H. & Weitkamp, J. (eds) in Handbook of Heterogeneous Catalysis (VCH, 1997).

  2. Harding, C. et al. Control and manipulation of gold nanocatalysis: Effects of metal oxide support, thickness, and composition. J. Am. Chem. Soc. 131, 538–548 (2009).

    Article  CAS  Google Scholar 

  3. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    Article  CAS  Google Scholar 

  4. Renaud, G. et al. Real-time monitoring of growing nanoparticles. Science 300, 1416–1419 (2003).

    Article  CAS  Google Scholar 

  5. Conner, W. C. & Falconer, J. L. Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995).

    Article  CAS  Google Scholar 

  6. Libuda, J. & Freund, H-J. Molecular beam experiments on model catalysts. Surf. Sci. Rep. 57, 157–298 (2005).

    Article  CAS  Google Scholar 

  7. Caballero, A. et al. In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: Hydrogen-induced burial and dig out of metallic nickel. Chem. Commun. 1097–1099 (2010).

    Article  CAS  Google Scholar 

  8. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  9. Schalow, T. et al. Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew. Chem. Int. Ed. 44, 7601–7605 (2005).

    Article  CAS  Google Scholar 

  10. Vayssilov, G. N., Gates, B. C. & Rösch, N. Oxidation of supported rhodium clusters by support hydroxy groups. Angew. Chem. Int. Ed. 42, 1391–1394 (2003).

    Article  CAS  Google Scholar 

  11. Steinrück, H-P., Libuda, J. & King, D. A. Chemistry at surfaces. Chem. Soc. Rev. 37, 2153–2154 (2008).

    Article  Google Scholar 

  12. Bowker, M. The 2007 Nobel Prize in Chemistry for surface chemistry: Understanding nanoscale phenomena at surfaces. ACS Nano 1, 253–257 (2007).

    Article  CAS  Google Scholar 

  13. Chen, M. S. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    Article  CAS  Google Scholar 

  14. Freund, H-J. et al. Preparation and characterization of model catalysts: From ultrahigh vacuum to in situ conditions at the atomic dimension. J. Catal. 216, 223–235 (2003).

    Article  CAS  Google Scholar 

  15. Trovarelli, A. Catalysis by Ceria and Related Metals (Imperial College Press, 2002).

    Book  Google Scholar 

  16. Gandhi, H. S., Graham, G. W. & McCabe, R. W. Automotive exhaust catalysis. J. Catal. 216, 433–442 (2003).

    Article  CAS  Google Scholar 

  17. Kaspar, J., Fornasiero, P. & Hickey, N. Automotive catalytic converters: Current status and some perspectives. Catal. Today 77, 419–449 (2003).

    Article  CAS  Google Scholar 

  18. Pozdnyakova, O. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J. Catal. 237, 17–28 (2006).

    Article  CAS  Google Scholar 

  19. Viñes, F. et al. Methane activation by platinum: Critical role of edge and corner sites of metal nanoparticles. Chem. Eur. J. 16, 6530–6539 (2010).

    Article  Google Scholar 

  20. Carrettin, S., Concepcion, P., Corma, A., Nieto, J. M. L. & Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43, 2538–2540 (2004).

    Article  CAS  Google Scholar 

  21. Rodriguez, J. et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water–gas shift reaction. Science 318, 1757–1760 (2007).

    Article  CAS  Google Scholar 

  22. Bunluesin, T., Gorte, R. J. & Graham, G. W. Studies of the water–gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties. Appl. Catal. B 15, 107–114 (1998).

    Article  CAS  Google Scholar 

  23. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  Google Scholar 

  24. Zhai, Y. P. et al. Alkali-stabilized Pt–OHx species catalyze low-temperature water–gas shift reactions. Science 329, 1633–1636 (2010).

    Article  CAS  Google Scholar 

  25. Matolı´n, V. et al. A resonant photoelectron spectroscopy study of Sn(Ox) doped CeO2 catalysts. Surf. Interface Anal. 40, 225–230 (2008).

    Article  Google Scholar 

  26. Matsumoto, M. et al. Resonant photoemission study of CeO2 . Phys. Rev. B 50, 11340–11346 (1994).

    Article  CAS  Google Scholar 

  27. Loschen, C., Bromley, S. T., Neyman, K. M. & Illas, F. Understanding ceria nanoparticles from first-principles calculations. J. Phys. Chem. C 111, 10142–10145 (2007).

    Article  CAS  Google Scholar 

  28. Loschen, C., Migani, A., Bromley, S. T., Illas, S. & Neyman, K. M. Density functional studies of model cerium oxide nanoparticles. Phys. Chem. Chem. Phys. 10, 5730–5738 (2008).

    Article  CAS  Google Scholar 

  29. Migani, A., Loschen, C., Illas, F. & Neyman, K. M. Towards size-converged properties of model ceria nanoparticles: Monitoring by adsorbed CO using DFT plus U approach. Chem. Phys. Lett. 465, 106–109 (2008).

    Article  CAS  Google Scholar 

  30. Migani, A., Vayssilov, G. N., Bromley, S. T., Illas, F. & Neyman, K. M. Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chem. Commun. 46, 5936–5938 (2010).

    Article  CAS  Google Scholar 

  31. Yang, Z., Lu, Z. & Luo, G. First-principles study of the Pt/CeO2(111) interface. Phys. Rev. B 76, 075421 (2007).

    Article  Google Scholar 

  32. Bruix, A., Neyman, K. M. & Illas, F. Adsorption, oxidation and diffusion of Pt atoms on the CeO2(111) surface. J. Phys. Chem. C 114, 14202–14207 (2010).

    Article  CAS  Google Scholar 

  33. Yang, Z., Lu, Z., Luo, G., Woo, T. K. & Hermansson, K. Structural and electronic properties of NM-doped ceria (NM=Pt,Rh): A first-principles study. J. Phys. Cond. Mat. 20, 035210 (2008).

    Article  Google Scholar 

  34. Tang, Z. et al. Methane complete and partial oxidation catalysed by Pt-doped CeO2 . J. Catal. 273, 125–137 (2010).

    Article  CAS  Google Scholar 

  35. Zafiris, G. S. & Gorte, R. J. Evidence for low-temperature oxygen migration from ceria to Rh. J. Catal. 139, 561–567 (1993).

    Article  CAS  Google Scholar 

  36. Smirnov, M. Y. & Graham, G. W. Pd oxidation under UHV in a model Pd/ceria-zirconia catalyst. Catal. Lett. 72, 39–44 (2001).

    Article  CAS  Google Scholar 

  37. Lykhach, Y. et al. Microscopic insights into methane activation and related processes on Pt/ceria model catalysts. ChemPhysChem 11, 1496–1504 (2010).

    Article  CAS  Google Scholar 

  38. Fiorin, V., Borthwick, D. & King, D. A. Microcalorimetry of O2 and NO on flat and stepped platinum surfaces. Surf. Sci. 603, 1360–1364 (2009).

    Article  CAS  Google Scholar 

  39. Šutara, F. et al. Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111). Thin Solid Films 516, 6120–6124 (2008).

    Article  Google Scholar 

  40. Matolı´n, V. et al. Growth of ultra-thin cerium oxide layers on Cu(111). Appl. Surf. Sci. 254, 153–155 (2007).

    Article  Google Scholar 

  41. Torbrügge, S., Cranney, M. & Reichling, M. Morphology of step structures on CeO2(111). Appl. Phys. Lett. 93, 073112 (2008).

    Article  Google Scholar 

  42. Mullins, D. R. & Zhang, J. Metal–support interactions between Pt and thin film cerium oxide. Surf. Sci. 513, 163–173 (2002).

    Article  CAS  Google Scholar 

  43. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  44. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation (correction, addition). Phys. Rev. B 48, 4978 (1993).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  46. Nolan, M., Grigoleit, S., Sayle, D. C., Parker, S. C. & Watson, G. W. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf. Sci. 576, 217–229 (2005).

    Article  CAS  Google Scholar 

  47. Ganduglia-Pirovano, M. V., Silva, J. L. F. D. & Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 102, 026101 (2009).

    Article  Google Scholar 

  48. Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  CAS  Google Scholar 

  49. Loschen, C., Carrasco, J., Neyman, K. M. & Illas, F. First-principles LDA plus U and GGA plus U study of cerium oxides: Dependence on the effective U parameter. Phys. Rev. B 75, 035115 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft within the ERACHEM program (‘NanoFunC’ project) and within the Excellence Cluster ‘Engineering of Advanced Materials’. A.M. thanks Generalitat de Catalunya (GC) for a Beatriu de Pinós grant and F.I. acknowledges GC for the 2009 ICREA Academia Research Award. We are grateful for support by the Bulgarian National Science Fund (grants DO02-82 and DO02-115), Spanish MICINN (grants FIS2008-02238, CTQ2007-30547-E/BQU), GC (2009SGR1041 and XRQTC), Fonds der Chemischen Industrie, DAAD (PPP, Acciones Integradas Hispano-Alemanas), HPC-Europa2, European Union (COST D41) and Ministry of Education of the Czech Republic (LC06058 and LA08022) funding the Materials Science Beamline. Calculations were carried out on the MARENOSTRUM supercomputer of the Barcelona Supercomputer Center and at BG/P at the Bulgarian Supercomputer Center. We acknowledge cooperation with the Lehrstuhl für Festkörperphysik at Friedrich-Alexander-Universität Erlangen-Nürnberg and the support of Dr. L. Hammer and Professor M.A. Schneider in scanning tunnelling microscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

G.N.V., A.M., G.P.P. and A.B. carried out the DFT calculations. G.N.V., K.M.N. and F.I. analysed the calculated data. K.M.N. and G.N.V. were involved in preparation of the manuscript and supervised the theoretical work. Y.L., T. Staudt, N.T. and T. Skála carried out the RPES experiments. K.C.P. contributed to the RPES experiments and operation of the experimental facilities. Y.L. and J.L. were involved in the analysis of the experimental data and the preparation of the manuscript. J.L. and V.M. supervised the experimental work.

Corresponding authors

Correspondence to Konstantin M. Neyman or Jörg Libuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vayssilov, G., Lykhach, Y., Migani, A. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature Mater 10, 310–315 (2011). https://doi.org/10.1038/nmat2976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing