Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2

Abstract

Lithium can be reversibly intercalated into layered Li1+xV1−xO2 (LiCoO2 structure) at 0.1 V, but only if x>0. The low voltage combined with a higher density than graphite results in a higher theoretical volumetric energy density; important for future applications in portable electronics and electric vehicles. Here we investigate the crucial question, why Li cannot intercalate into LiVO2 but Li-rich compositions switch on intercalation at an unprecedented low voltage for an oxide? We show that Li+ intercalated into tetrahedral sites are energetically more stable for Li-rich compositions, as they share a face with Li+ on the V site in the transition metal layers. Li incorporation triggers shearing of the oxide layers from cubic to hexagonal packing because the Li2VO2 structure can accommodate two Li per formula unit in tetrahedral sites without face sharing. Such understanding is important for the future design and optimization of low-voltage intercalation anodes for lithium batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization of as-prepared Li1+xV1−xO2.
Figure 2: Variation of potential (versus Li+[1 M]/Li) with state of charge for Li1+xV1−xO2.
Figure 3: Expanded regions of the powder neutron diffraction patterns collected at various states of charge for Li1.07V0.93O2.
Figure 4: Schematic representation of the structure of Li2VO2.
Figure 5: Configurations of 2VV4+ and LiV+ in the vanadium layer of Li1.07V0.93O2.
Figure 6: Calculated local structures around an inserted Li+ ion in LiVO2 and Li1.07V0.93O2.

Similar content being viewed by others

References

  1. Choi, N. S., Kim, J. S., Yin, R. Z. & Kim, S. S. Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery. Mater. Chem. Phys. 116, 603–606 (2009).

    Article  CAS  Google Scholar 

  2. Song, J. H. et al. Electrochemical characteristics of lithium vanadate, Li1+xVO2, new anode materials for lithium ion batteries. J. Power Sources 195, 6157–6161 (2010).

    Article  CAS  Google Scholar 

  3. Kim, S-S., Kim, J., Koike, M. & Kobayashi, N. 14th International Meeting on Lithium Batteries, Tianjin, China, Abstr. #20 (2008).

  4. Kim, S-S., Nitta, Y., Nedoseykina, T. I. & Lee, J-C. US Patent Application US 2006/0088766 (2006).

  5. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  6. Nazri, G-A. & Pistoia, G. (eds) Lithium Batteries Science and Technology (Kluwer Academic/Plenum, 2004).

  7. Arico, A. S., Bruce, P. G., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  8. Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    Article  CAS  Google Scholar 

  9. Huggins, R. A. in Handbook of Battery Materials (ed. Besenhard, J. O.) (Wiley-VCH, 1999) Part III, Chapter 4.

    Google Scholar 

  10. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallic and composites. Electrochim. Acta 45, 31–50 (1999).

    Article  CAS  Google Scholar 

  11. Mao, O. & Dahn, J. R. Mechanically alloyed Sn–Fe(–C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423–427 (1999).

    Article  CAS  Google Scholar 

  12. Beaulieu, L. Y. & Dahn, J. R. The reaction of lithium with Sn–Mn–C intermetallics prepared by mechanical alloying. J. Electrochem. Soc. 147, 3237–3241 (2000).

    Article  CAS  Google Scholar 

  13. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010).

    Article  CAS  Google Scholar 

  14. Amadei, I., Panero, S., Scrosati, B., Cocco, G. & Schiffini, L. The Ni3Sn4 intermetallic as a novel electrode in lithium cells. J. Power Sources 143, 227–230 (2005).

    Article  CAS  Google Scholar 

  15. Graetz, J., Ahn, C. C., Yazami, R. & Fuetz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194–A197 (2003).

    Article  CAS  Google Scholar 

  16. Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154–A156 (2003).

    Article  CAS  Google Scholar 

  17. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    Article  CAS  Google Scholar 

  18. Kepler, K. D., Vaughey, J. T. & Thackeray, M. M. LixCu6Sn5 (0<x<13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett. 2, 307–309 (1999).

    Article  CAS  Google Scholar 

  19. Fransson, L. M. L. et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: An in situ X-ray diffraction study. Electrochem. Commun. 3, 317–323 (2001).

    Article  CAS  Google Scholar 

  20. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  21. Leroux, F., Coward, G. R., Power, W. P. & Nazar, L. F. Understanding the nature of low-potential Li uptake into high volumetric capacity molybedenum oxides. Electrochem. Solid-State Lett. 1, 255–258 (1998).

    Article  CAS  Google Scholar 

  22. Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 7, 567–573 (2006).

    Article  Google Scholar 

  23. Pereira, N., Dupont, L., Tarascon, J. M, Klein, L. C. & Amatucci, G. G. Electrochemistry of Cu3N with lithium — A complex system with parallel processes. J. Electrochem. Soc. 150, A1273–A1280 (2003).

    Article  CAS  Google Scholar 

  24. Li, H., Ritcher, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).

    Article  CAS  Google Scholar 

  25. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites: High capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003).

    Article  CAS  Google Scholar 

  26. Pralong, V., Souza, D. C. S., Leung, K. T. & Nazar, L. Reversible lithium uptake by CoP3 at low potential: Role of the anion. Electrochem. Commun. 4, 516–520 (2002).

    Article  CAS  Google Scholar 

  27. Peled, E. The electrochemical-behaviour of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  CAS  Google Scholar 

  28. Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    Article  CAS  Google Scholar 

  29. Besenhard, J. O., Winter, M., Yang, J. & Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228–231 (1995).

    Article  CAS  Google Scholar 

  30. Park, S-Y., Choi, N-S., Yew, K-H., Lee, D-K. & Kim, S-S. US Patent Application US 2009/0068566 (2009).

  31. David, W. I. F., Goodenough, J. B., Thackeray, M. M. & Thomas, M. G. S. R. The crystal-structure of Li2MnO2 . Rev. Chim. Miner. 20, 636–642 (1983).

    CAS  Google Scholar 

  32. Dahn, J. R., Von Sacken, U. & Michal, C. A. Structure and electrochemistry of Li1+/−yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ion. 44, 87–97 (1990).

    Article  CAS  Google Scholar 

  33. Davidson, I., Greedan, J. E., Von Sacken, U., Michal, C. A. & Dahn, J. R. Structure of 1 T–Li2NiO2 from powder neutron-diffraction. Solid State Ion. 46, 243–247 (1991).

    Article  CAS  Google Scholar 

  34. Johnson, C. S. et al. The role of Li2MO2 structures (M=metal ion) in the electrochemistry of (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 electrodes for lithium-ion batteries. Electrochem. Commun. 4, 492–498 (2002).

    Article  CAS  Google Scholar 

  35. Johnson, C. S. et al. Structural characterization of layered LixNi0.5Mn0.5O2 (0<x≤2) oxide electrodes for Li batteries. Chem. Mater. 15, 2313–2322 (2003).

    Article  CAS  Google Scholar 

  36. Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater 17, 5085–5092 (2005).

    Article  CAS  Google Scholar 

  37. Kendrick, E., Kendrick, J., Knight, K. S., Islam, M. S. & Slater, P. R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nature Mater. 6, 871–874 (2007).

    Article  CAS  Google Scholar 

  38. Catlow, C. R. A. (ed.) Computer Modelling in Inorganic Crystallography (Academic, 1997).

  39. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 70, 235121 (2004).

    Article  Google Scholar 

  40. Kang, K. S., Meng, Y. S., Breger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    Article  CAS  Google Scholar 

  41. Arrouvel, C., Parker, S. C. & Islam, M. S. Lithium insertion and transport in the TiO2–B anode material: A computational study. Chem. Mater. 21, 4778–4783 (2009).

    Article  CAS  Google Scholar 

  42. Braithwaite, J. S., Catlow, C. R. A., Gale, J. D., Harding, J. H. & Ngoepe, P. E. Calculated cell discharge curve for lithium batteries with a V2O5 cathode. J. Mater. Chem. 10, 239–240 (2000).

    Article  CAS  Google Scholar 

  43. Scanlon, D. O., Walsh, A., Morgan, B. J. & Watson, G. W. An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J. Phys. Chem. C 112, 9903–9911 (2008).

    Article  CAS  Google Scholar 

  44. Meng, Y. S. & Arroyo-de Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589–609 (2009).

    CAS  Google Scholar 

  45. Hodnett, B.K., Permanne, Ph. & Delmon, B. Influence of p/v ratio on the phase composition and catalytic activity of vanadium phosphate based catalysts. Appl. Catalys. 6, 231–244 (1983).

    Article  CAS  Google Scholar 

  46. Coelho, A. A. Whole-profile structure solution from powder diffraction data using simulated annealing. J. Appl. Crystallogr. 33, 899–908 (2000).

    Article  CAS  Google Scholar 

  47. Gale, J. D. & Rohl, A. L. The general utility lattice program. Mol. Simul. 29, 291–341 (2003).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  49. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  50. Burke, K., Perdew, J. P. & Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions (eds Dobson, J. F. & Vignale, G.) (Plenum, 1998).

    Google Scholar 

  51. Yin, R. Z., Kim, Y. S., Choi, W. U., Kim, S. S. & Kim, H. J. Structural analysis and first-principles calculation of lithium vanadium oxide for advanced Li-ion batteries. Adv. Quantum Chem. 54, 23–33 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.G.B. and M.S.I. are indebted to the European Union and EPSRC for financial support. The computations were run on the HECToR facilities via the Materials Chemistry Consortium.

Author information

Authors and Affiliations

Authors

Contributions

A.R.A. and C.L. carried out the experimental work and data analysis, P.M.P. the modelling, M.S.I. and P.G.B. conceived and directed the project.

Corresponding authors

Correspondence to M. Saiful Islam or Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, A., Lyness, C., Panchmatia, P. et al. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2. Nature Mater 10, 223–229 (2011). https://doi.org/10.1038/nmat2967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing