Abstract
Synthetic polymers containing metal centres are emerging as an interesting and broad class of easily processable materials with properties and functions that complement those of state-of-the-art organic macromolecular materials. A diverse range of different metal centres can be harnessed to tune macromolecular properties, from transition- and main-group metals to lanthanides. Moreover, the linkages that bind the metal centres can vary almost continuously from strong, essentially covalent bonds that lead to irreversible or 'static' binding of the metal to weak and labile, non-covalent coordination interactions that allow for reversible, 'dynamic' or 'metallosupramolecular', binding. Here we review recent advances and challenges in the field and illustrate developments towards applications as emissive and photovoltaic materials; as optical limiters; in nanoelectronics, information storage, nanopatterning and sensing; as macromolecular catalysts and artificial enzymes; and as stimuli-responsive materials. We focus on materials in which the metal centres provide function; although they can also play a structural role, systems where this is solely their purpose have not been discussed.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Bioinspired crowding directs supramolecular polymerisation
Nature Communications Open Access 25 February 2023
-
Synthesis and photophysical investigations of pyridine-pyrazolate bound boron(III) diaryl complexes
Scientific Reports Open Access 01 October 2022
-
Stepwise introduction of three different transition metals in metallo-supramolecular polymer for quad-color electrochromism
Communications Chemistry Open Access 03 May 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Schubert, U. S. & Eschbaumer, C. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew. Chem. Int. Ed. 41, 2892–2926 (2002).
Manners, I. Synthetic Metal-Containing Polymers (Wiley-VCH, 2004).
Williams, K. A., Boydston, A. J. & Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 36, 729–744 (2007).
Abd-El-Aziz, A. S., Shipman, P. O., Boden, B. N. & McNeil, W. S. Synthetic methodologies and properties of organometallic and coordination macromolecules. Prog. Polym. Sci. 35, 714–836 (2010).
Heilmann, J. B. et al. A synthetic route to borylene-bridged poly(ferrocenylene)s. Angew. Chem. Int. Ed. 45, 920–925 (2006).
Chan, W. K. Metal containing polymers with heterocyclic rigid main chains. Coord. Chem. Rev. 251, 2104–2118 (2007).
Wong, W-Y. & Harvey, P. D. Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-bis(para-ethynylbenzene)bis(phosphine)platinum(II) chromophore and related derivatives. Macromol. Rapid Commun. 31, 671–713 (2010).
Fukumoto, H., Yamane, K., Kase, Y. & Yamamoto, T. π-conjugated poly(aryleneethynylene)s consisting of salophen and Ni-salophen units in the π-conjugated main chain: preparation and chemical properties. Macromolecules 43, 10366–10375 (2010).
Herbert, D. E., Mayer, U. F. J. & Manners, I. Strained metallocenophanes and related organometallic rings containing π-hydrocarbon ligands and transition-metal centers. Angew. Chem. Int. Ed. 46, 5060–5081 (2007).
Bellas, V. & Rehahn, M. Polyferrocenylsilane-based polymer systems. Angew. Chem. Int. Ed. 46, 5082–5104 (2007).
Holliday, B. J. & Swager, T. M. Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem. Commun. 23–36 (2005).
Wolf, M. O. Transition-metal-polythiophene hybrid materials. Adv. Mater. 1 3, 545–553 (2001).
Grubbs, R. B. Hybrid metal–polymer composites from functional block copolymers. J. Polym. Sci. A 43, 4323–4336 (2005).
Qin, Y., Cui, C. & Jäkle, F. Tris(1-pyrazolyl)borate (scorpionate) functionalized polymers as scaffolds for metallopolymers. Macromolecules 4 1, 2972–2974 (2008).
Ren, L., Hardy, C. G. & Tang, C. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers. J. Am. Chem. Soc. 1 32, 8874–8875 (2010).
Furuta, P. T. et al. Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. J. Am. Chem. Soc. 126, 15388–15389 (2004).
Hanton, S. D. Mass spectrometry of polymers and polymer surfaces. Chem. Rev. 101, 527–570 (2001).
RaŞa, M. & Schubert, U. S. Progress in the characterization of synthetic (supramolecular) polymers by analytical ultracentrifugation. Soft Matter 2, 561–572 (2006).
Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).
Holder, E., Langeveld, B. M. W. & Schubert, U. S. New trends in the use of transition metal-ligand complexes for applications in electroluminescent devices. Adv. Mater. 17, 1109–1121 (2005).
Ulbricht, C. et al. Recent developments in the application of phosphorescent iridium(III) complex systems. Adv. Mater. 21, 4418–4441 (2009).
Ulbricht, C. et al. Copolymers containing phosphorescent iridium(III) complexes obtained by free and controlled radical polymerization techniques. Macromol. Rapid Commun. 29, 1919–1925 (2008).
Ulbricht, C., Remzi Becer, C., Winter, A. & Schubert, U. S. Raft polymerization meets coordination chemistry: synthesis of a polymer-based iridium(III) emitter. Macromol. Rapid Commun. 31, 827–833 (2010).
Winter, A. et al. Self-assembly of π-conjugated bis(terpyridine) ligands with zinc(II) ions: new metallosupramolecular materials for optoelectronic applications. J. Polym. Sci. A 47, 4083–4098 (2009).
Ho, C-L. et al. Efficient electrophosphorescence from a platinum metallopolyyne featuring a 2,7-carbazole chromophore. Macromol. Chem. Phys. 210, 1786–1798 (2009).
Wu, F-I. et al. Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv. Funct. Mater. 17, 1085–1092 (2007).
Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374 (2009).
Shunmugam, R. & Tew, G. N. Unique emission from polymer based lanthanide alloys. J. Am. Chem. Soc. 127, 13567–13572 (2005).
Kishimura, A., Yamashita, T., Yamaguchi, K. & Aida, T. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nature Mater. 4, 546–549 (2005).
Brabec, C. J. et al. Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010).
Beaujuge, P. M., Amb, C. M. & Reynolds, J. R. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 43, 1396–1407 (2010).
Wong, W-Y. & Ho, C-L. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc. Chem. Res. 43, 1246–1256 (2010).
Wong, W-Y. et al. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nature Mater. 6, 521–527 (2007).
Wong, W-Y. et al. On the efficiency of polymer solar cells. Nature Mater. 6, 704–705 (2007).
Wu, P-T. et al. Organometallic donor–acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties. Macromolecules 42, 671–681 (2009).
Tse, C. W. et al. Layer-by-layer deposition of rhenium-containing hyperbranched polymers and fabrication of photovoltaic cells. Chem. Eur. J. 13, 328–335 (2007).
Nanjo, M. et al. Donor–acceptor C60-containing polyferrocenylsilanes: synthesis, characterization, and applications in photodiode devices. Adv. Funct. Mater. 18, 470–477 (2008).
Wild, A. et al. π-conjugated donor and donor–acceptor metallo-polymers. Macromol. Rapid Commun. 31, 868–874 (2010).
Zhou, G-J., Wong, W-Y., Ye, C. & Lin, Z. Optical power limiters based on colorless di-, oligo-, and polymetallaynes: highly transparent materials for eye protection devices. Adv. Funct. Mater. 17, 963–975 (2007).
Hollins, R. C. Materials for optical limiters. Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
Zhou, G-J., Wong, W-Y., Cui, D. & Ye, C. Large optical-limiting response in some solution-processable polyplatinaynes. Chem. Mater. 17, 5209–5217 (2005).
Zhou, G-J., Wong, W-Y., Lin, Z. & Ye, C. White metallopolyynes for optical limiting/transparency trade-off optimization. Angew. Chem. Int. Ed. 45, 6189–6193 (2006).
Rakitin, A. et al. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett. 86, 3670–3673 (2001).
Tanaka, K. & Shionoya, M. Synthesis of a novel nucleoside for alternative DNA base pairing through metal complexation. J. Org. Chem. 64, 5002–5003 (1999).
Meggers, E. et al. A novel copper-mediated DNA base pair. J. Am. Chem. Soc. 122, 10714–10715 (2000).
Weizman, H. & Tor, Y. 2,2′-bipyridine ligandoside: a novel building block for modifying DNA with intra-duplex metal complexes. J. Am. Chem. Soc. 123, 3375–3376 (2001).
Tanaka, K., Yamada, Y. & Shionoya, M. Formation of silver(I)-mediated DNA duplex and triplex through an alternative base pair of pyridine nucleobases. J. Am. Chem. Soc. 124, 8802–8803 (2002).
Takezawa, Y. et al. Soft metal-mediated base pairing with novel synthetic nucleosides possessing an O, S-donor ligand. J. Org. Chem. 73, 6092–6098 (2008).
Tanaka, K. et al. Efficient incorporation of a copper hydroxypyridone base pair in DNA. J. Am. Chem. Soc. 124, 12494–12498 (2002).
Tanaka, K. et al. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).
Choi, T-L. et al. Synthesis and nonvolatile memory behavior of redox-active conjugated polymer-containing ferrocene. J. Am. Chem. Soc. 129, 9842–9843 (2007).
Ling, Q. et al. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Adv. Mater. 17, 455–459 (2005).
Ling, Q-D. et al. WORM-type memory device based on a conjugated copolymer containing europium complex in the main chain. Electrochem. Solid-State Lett. 9, G268–G271 (2006).
Bates, F. S. Polymer-polymer phase behavior. Science 251, 898–905 (1991).
Rider, D. A. et al. Diblock copolymers with amorphous atactic polyferrocenylsilane blocks: synthesis, characterization, and self-assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk state. Macromolecules 38, 6931–6938 (2005).
Korczagin, I. et al. Surface nano- and microstructuring with organometallic polymers. Adv. Polym. Sci. 200, 91–117 (2006).
Lammertink, R. G. H. et al. Nanostructured thin films of organic-organometallic block copolymers. One-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv. Mater. 12, 98–103 (2000).
Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).
Chuang, V. P. et al. Templated self-assembly of square symmetry arrays from an abc triblock terpolymer. Nano Lett. 9, 4364–4369 (2009).
Rider, D. A. et al. Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). ACS Nano 2, 263–270 (2008).
Mejia, M. L., Agapiou, K., Yang, X. & Holliday, B. J. Seeded growth of CdS nanoparticles within a conducting metallopolymer matrix. J. Am. Chem. Soc. 131, 18196–18197 (2009).
Shi, W. et al. Single-chain elasticity of poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylphenylsilane). Macromolecules 37, 1839–1842 (2004).
Zou, S. et al. Single molecule force spectroscopy of smart poly(ferrocenylsilane) macromolecules: towards highly controlled redox-driven single chain motors. Polymer 47, 2483–2492 (2006).
Zou, S., Hempenius, M. A., Schoenherr, H. & Vancso, G. J. Force spectroscopy of individual stimulus-responsive poly(ferrocenyldimethylsilane) chains: towards a redox-driven macromolecular motor. Macromol. Rapid Commun. 27, 103–108 (2006).
Robinson, K. L. & Lawrence, N. S. Redox-sensitive copolymer: a single-component pH sensor. Anal. Chem. 78, 2450–2455 (2006).
Wang, Z. et al. Covalent attachment of Ru(II) phenanthroline complexes to polythionylphosphazenes: the development and evaluation of single-component polymeric oxygen sensors. Adv. Funct. Mater. 12, 415–419 (2002).
Payne, S. J., Fiore, G. L., Fraser, C. L. & Demas, J. N. Luminescence oxygen sensor based on a ruthenium(II) star polymer complex. Anal. Chem. 82, 917–921 (2010).
Holliday, B. J., Stanford, T. B. & Swager, T. M. Chemoresistive gas-phase nitric oxide sensing with cobalt-containing conducting metallopolymers. Chem. Mater. 18, 5649–5651 (2006).
Suzuki, D., Sakai, T. & Yoshida, R. Self-flocculating/self-dispersing oscillation of microgels. Angew. Chem. Int. Ed. 47, 917–920 (2008).
Shinohara, S-I. et al. Photoregulated wormlike motion of a gel. Angew. Chem. Int. Ed. 47, 9039–9043 (2008).
Puzzo, D. P., Arsenault, A. C., Manners, I. & Ozin, G. A. Electroactive inverse opal: a single material for all colors. Angew. Chem. Int. Ed. 48, 943–947 (2009).
Arsenault, A. C., Puzzo, D. P., Manners, I. & Ozin, G. A. Photonic-crystal full-colour displays. Nature Photon. 1, 468–472 (2007).
Kim, H-J., Lee, J-H. & Lee, M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed. 44, 5810–5814 (2005).
Kim, H-J., Lee, E., Park, H-S. & Lee, M. Dynamic extension-contraction motion in supramolecular springs. J. Am. Chem. Soc. 129, 10994–10995 (2007).
Ruiz, M. S., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. A water soluble diruthenium-gold organometallic microgel. Angew. Chem. Int. Ed. 47, 8665–8669 (2008).
Beck, J. B., Ineman, J. M. & Rowan, S. J. Metal/ligand-induced formation of metallo-supramolecular polymers. Macromolecules 38, 5060–5068 (2005).
Weng, W., Beck, J. B., Jamieson, A. M. & Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 128, 11663–11672 (2006).
Knapton, D., Burnworth, M., Rowan, S. J. & Weder, C. Fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics. Angew. Chem. Int. Ed. 45, 5825–5829 (2006).
Vermonden, T. et al. Linear rheology of water-soluble reversible neodymium(III) coordination polymers. J. Am. Chem. Soc. 126, 15802–15808 (2004).
Paulusse, J. M. J., van Beek, D. J. M. & Sijbesma, R. P. Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks. J. Am. Chem. Soc. 129, 2392–2397 (2007).
Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).
South, C. R., Pinon, V. III & Weck, M. Erasable coordination polymer multilayers on gold. Angew. Chem. Int. Ed. 47, 1425–1428 (2008).
Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of functional metalloproteins. Nature 460, 855–862 (2009).
Fasan, R., Chen, M. M., Crook, N. C. & Arnold, F. H. Engineered alkane-hydroxylating cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew. Chem. Int. Ed. 46, 8414–8418 (2007).
Pordea, A. & Ward, T. R. Artificial metalloenzymes: combining the best features of homogeneous and enzymatic catalysis. Synlett. 3225–3236 (2009).
Collot, J. et al. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. J. Am. Chem. Soc. 125, 9030–9031 (2003).
Davies, R. R. et al. Artificial metalloenzymes based on protein cavities: exploring the effect of altering the metal ligand attachment position by site directed mutagenesis. Bioorg. Med. Chem. Lett. 9, 79–84 (1999).
Coquiere, D., Bos, J., Beld, J. & Roelfes, G. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold. Angew. Chem. Int. Ed. 48, 5159–5162 (2009).
Kurashina, M., Murata, M., Watanabe, T. & Nishihara, H. Synthesis of poly(biphenylene ruthenacyclopentatrienylene), a new organometallic conducting polymer with ferromagnetic interaction in its reduced state. J. Am. Chem. Soc. 125, 12420–12421 (2003).
Hui, J. K-H., Yu, Z. & MacLachlan, M. J. Supramolecular assembly of zinc salphen complexes: access to metal-containing gels and nanofibers. Angew. Chem. Int. Ed. 46, 7980–7983 (2007).
Lin, N-T. et al. From polynorbornene to the complementary polynorbornene by replication. Angew. Chem. Int. Ed. 46, 4481–4485 (2007).
Lou, X. et al. Polymer-based elemental tags for sensitive bioassays. Angew. Chem. Int. Ed. 46, 6111–6114 (2007).
Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).
Fiore, G. L. & Fraser, C. L. Iron-centered star polymers with pentablock bipyridine-centered PEG-PCL-PLA macroligands. Macromolecules 41, 7892–7897 (2008).
Roberts, R. L. et al. Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv. Mater. 21, 2318–2322 (2009).
Gaedt, T. et al. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nature Mater. 8, 144–150 (2009).
Moughton, A. O. & O'Reilly, R. K. Using metallo-supramolecular block copolymers for the synthesis of higher order nanostructured assemblies. Macromol. Rapid Commun. 31, 37–52 (2010).
Wang, X. & McHale, R. Metal-containing polymers: building blocks for functional (nano)materials. Macromol. Rapid Commun. 31, 331–350 (2010).
Shi, H-F. et al. Simple conjugated polymers with on-chain phosphorescent iridium(III) complexes: toward ratiometric chemodosimeters for detecting trace amounts of mercury(II). Chem. Eur. J. 16, 12158–12167 (2010).
Liu, W., Huang, W., Pink, M. & Lee, D. Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport. J. Am. Chem. Soc. 132, 11844–11846 (2010).
Ghosh, S. & Defrancq, E. Metal-complex/DNA conjugates: a versatile building block for DNA nanoarrays. Chem. Eur. J. 16, 12780–12787 (2010).
Powell, A. B., Bielawski, C. W. & Cowley, A. H. Design, synthesis, and study of main chain poly(N-heterocyclic carbene) complexes: applications in electrochromic devices. J. Am. Chem. Soc. 132, 10184–10194 (2010).
Liu, K. et al. Synthesis and lithographic patterning of FePt nanoparticles using a bimetallic metallopolyyne precursor. Angew. Chem. Int. Ed. 47, 1255–1259 (2008).
Paquet, C., Cyr, P. W., Kumacheva, E. & Manners, I. Rationalized approach to molecular tailoring of polymetallocenes with predictable optical properties. Chem. Mater. 16, 5202–5211 (2004).
Tamura, K. et al. Charge/discharge properties of organometallic batteries fabricated with ferrocene-containing polymers. Macromol. Rapid Commun. 29, 1944–1949 (2008).
Duprez, V., Biancardo, M., Spanggaard, H. & Krebs, F. C. Synthesis of conjugated polymers containing terpyridine-ruthenium complexes: photovoltaic applications. Macromolecules 38, 10436–10448 (2005).
Haque, S. A. et al. Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure–function relationship. Angew. Chem. Int. Ed. 44, 5740–5744 (2005).
Hager, M. D. et al. Self-healing materials. Adv. Mater. 22, 5424–5430 (2010).
Cordier, P., Tournilhac, F., Soulié- Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).
Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).
Hofmeier, H. & Schubert, U. S. Supramolecular branching and crosslinking of terpyridine-modified copolymers: complexation and decomplexation studies in diluted solution. Macromol. Chem. Phys. 204, 1391–1397 (2003).
Kersey, F. R., Loveless, D. M. & Craig, S. L. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J. R. Soc. Interface 4, 373–380 (2007).
Wang, F. et al. Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. Angew. Chem. Int. Ed. 49, 1090–1094 (2010).
Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).
De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).
Caseri, W. R. et al. “(Hot-)water-proof”, semiconducting, platinum-based chain structures: processing, products, and properties. Adv. Mater. 15, 125–129 (2003).
Dobrawa, R. & Würthner, F. Metallosupramolecular approach toward functional coordination polymers. J. Polym. Sci. A 43, 4981–4995 (2005).
Kurth, D. G. & Higuchi, M. Transition metal ions: weak links for strong polymers. Soft Matter 2, 915–927 (2006).
Knapton, D., Rowan, S. J. & Weder, C. Synthesis and properties of metallo-supramolecular poly(p-phenylene ethynylene)s. Macromolecules 39, 651–657 (2006).
Wheaton, C. A. & Puddephatt, R. J. A coordination polymer of gold(I) with heterotactic architecture and a comparison of the structures of isotactic, syndiotactic, and heterotactic isomers. Angew. Chem. Int. Ed. 46, 4461–4463 (2007).
Chow, C-F., Fujii, S. & Lehn, J-M. Metallodynamers: neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. Angew. Chem. Int. Ed. 46, 5007–5010 (2007).
Shunmugam, R., Gabriel, G. J., Aamer, K. A. & Tew, G. N. Metal-ligand-containing polymers: terpyridine as the supramolecular unit. Macromol. Rapid Commun. 31, 784–793 (2010).
Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater. 10, 14–27 (2011).
Astruc, D. & Chardac, F. Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 101, 2991–3024 (2001).
Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
Ian Manners is associated with Opalux Inc. as a scientific advisor. He is a coinventor of the technology illustrated in Figure 6b and c, which Opalux are developing.
Rights and permissions
About this article
Cite this article
Whittell, G., Hager, M., Schubert, U. et al. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nature Mater 10, 176–188 (2011). https://doi.org/10.1038/nmat2966
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2966
This article is cited by
-
Bioinspired crowding directs supramolecular polymerisation
Nature Communications (2023)
-
Synthesis and photophysical investigations of pyridine-pyrazolate bound boron(III) diaryl complexes
Scientific Reports (2022)
-
Frontal polymerization synthesis of scandium polyacrylamide nanomaterial and its application in humidity testing
Colloid and Polymer Science (2022)
-
Exploring the Nanomechanical Properties of a Coordination-bond Based Supramolecular Polymer
Chinese Journal of Polymer Science (2022)
-
State of the Art Metallopolymer Based Functional Nanomaterial for Photodetector and Solar Cell Application
Journal of Inorganic and Organometallic Polymers and Materials (2022)