Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional soft materials from metallopolymers and metallosupramolecular polymers

Subjects

Abstract

Synthetic polymers containing metal centres are emerging as an interesting and broad class of easily processable materials with properties and functions that complement those of state-of-the-art organic macromolecular materials. A diverse range of different metal centres can be harnessed to tune macromolecular properties, from transition- and main-group metals to lanthanides. Moreover, the linkages that bind the metal centres can vary almost continuously from strong, essentially covalent bonds that lead to irreversible or 'static' binding of the metal to weak and labile, non-covalent coordination interactions that allow for reversible, 'dynamic' or 'metallosupramolecular', binding. Here we review recent advances and challenges in the field and illustrate developments towards applications as emissive and photovoltaic materials; as optical limiters; in nanoelectronics, information storage, nanopatterning and sensing; as macromolecular catalysts and artificial enzymes; and as stimuli-responsive materials. We focus on materials in which the metal centres provide function; although they can also play a structural role, systems where this is solely their purpose have not been discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electro- and photoluminescent materials.
Figure 2: Supramolecular dichroic assemblies and optically responsive materials.
Figure 3: Materials with electronic and magnetic interactions.
Figure 4: Nanoscale templating and single-molecule motors.
Figure 5: Sensory materials.
Figure 6: Stimuli-responsive gels.
Figure 7: Linkers for the construction of metallosupramolecular networks.
Figure 8: Artificial metalloenzymes for catalysis.

References

  1. 1

    Schubert, U. S. & Eschbaumer, C. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew. Chem. Int. Ed. 41, 2892–2926 (2002).

    CAS  Google Scholar 

  2. 2

    Manners, I. Synthetic Metal-Containing Polymers (Wiley-VCH, 2004).

    Google Scholar 

  3. 3

    Williams, K. A., Boydston, A. J. & Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 36, 729–744 (2007).

    CAS  Google Scholar 

  4. 4

    Abd-El-Aziz, A. S., Shipman, P. O., Boden, B. N. & McNeil, W. S. Synthetic methodologies and properties of organometallic and coordination macromolecules. Prog. Polym. Sci. 35, 714–836 (2010).

    CAS  Google Scholar 

  5. 5

    Heilmann, J. B. et al. A synthetic route to borylene-bridged poly(ferrocenylene)s. Angew. Chem. Int. Ed. 45, 920–925 (2006).

    CAS  Google Scholar 

  6. 6

    Chan, W. K. Metal containing polymers with heterocyclic rigid main chains. Coord. Chem. Rev. 251, 2104–2118 (2007).

    CAS  Google Scholar 

  7. 7

    Wong, W-Y. & Harvey, P. D. Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-bis(para-ethynylbenzene)bis(phosphine)platinum(II) chromophore and related derivatives. Macromol. Rapid Commun. 31, 671–713 (2010).

    CAS  Google Scholar 

  8. 8

    Fukumoto, H., Yamane, K., Kase, Y. & Yamamoto, T. π-conjugated poly(aryleneethynylene)s consisting of salophen and Ni-salophen units in the π-conjugated main chain: preparation and chemical properties. Macromolecules 43, 10366–10375 (2010).

    CAS  Google Scholar 

  9. 9

    Herbert, D. E., Mayer, U. F. J. & Manners, I. Strained metallocenophanes and related organometallic rings containing π-hydrocarbon ligands and transition-metal centers. Angew. Chem. Int. Ed. 46, 5060–5081 (2007).

    CAS  Google Scholar 

  10. 10

    Bellas, V. & Rehahn, M. Polyferrocenylsilane-based polymer systems. Angew. Chem. Int. Ed. 46, 5082–5104 (2007).

    CAS  Google Scholar 

  11. 11

    Holliday, B. J. & Swager, T. M. Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem. Commun. 23–36 (2005).

  12. 12

    Wolf, M. O. Transition-metal-polythiophene hybrid materials. Adv. Mater. 1 3, 545–553 (2001).

    Google Scholar 

  13. 13

    Grubbs, R. B. Hybrid metal–polymer composites from functional block copolymers. J. Polym. Sci. A 43, 4323–4336 (2005).

    CAS  Google Scholar 

  14. 14

    Qin, Y., Cui, C. & Jäkle, F. Tris(1-pyrazolyl)borate (scorpionate) functionalized polymers as scaffolds for metallopolymers. Macromolecules 4 1, 2972–2974 (2008).

    Google Scholar 

  15. 15

    Ren, L., Hardy, C. G. & Tang, C. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers. J. Am. Chem. Soc. 1 32, 8874–8875 (2010).

    Google Scholar 

  16. 16

    Furuta, P. T. et al. Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. J. Am. Chem. Soc. 126, 15388–15389 (2004).

    CAS  Google Scholar 

  17. 17

    Hanton, S. D. Mass spectrometry of polymers and polymer surfaces. Chem. Rev. 101, 527–570 (2001).

    CAS  Google Scholar 

  18. 18

    RaŞa, M. & Schubert, U. S. Progress in the characterization of synthetic (supramolecular) polymers by analytical ultracentrifugation. Soft Matter 2, 561–572 (2006).

    Google Scholar 

  19. 19

    Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Holder, E., Langeveld, B. M. W. & Schubert, U. S. New trends in the use of transition metal-ligand complexes for applications in electroluminescent devices. Adv. Mater. 17, 1109–1121 (2005).

    CAS  Google Scholar 

  21. 21

    Ulbricht, C. et al. Recent developments in the application of phosphorescent iridium(III) complex systems. Adv. Mater. 21, 4418–4441 (2009).

    CAS  Google Scholar 

  22. 22

    Ulbricht, C. et al. Copolymers containing phosphorescent iridium(III) complexes obtained by free and controlled radical polymerization techniques. Macromol. Rapid Commun. 29, 1919–1925 (2008).

    CAS  Google Scholar 

  23. 23

    Ulbricht, C., Remzi Becer, C., Winter, A. & Schubert, U. S. Raft polymerization meets coordination chemistry: synthesis of a polymer-based iridium(III) emitter. Macromol. Rapid Commun. 31, 827–833 (2010).

    CAS  Google Scholar 

  24. 24

    Winter, A. et al. Self-assembly of π-conjugated bis(terpyridine) ligands with zinc(II) ions: new metallosupramolecular materials for optoelectronic applications. J. Polym. Sci. A 47, 4083–4098 (2009).

    CAS  Google Scholar 

  25. 25

    Ho, C-L. et al. Efficient electrophosphorescence from a platinum metallopolyyne featuring a 2,7-carbazole chromophore. Macromol. Chem. Phys. 210, 1786–1798 (2009).

    CAS  Google Scholar 

  26. 26

    Wu, F-I. et al. Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv. Funct. Mater. 17, 1085–1092 (2007).

    CAS  Google Scholar 

  27. 27

    Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374 (2009).

    CAS  Google Scholar 

  28. 28

    Shunmugam, R. & Tew, G. N. Unique emission from polymer based lanthanide alloys. J. Am. Chem. Soc. 127, 13567–13572 (2005).

    CAS  Google Scholar 

  29. 29

    Kishimura, A., Yamashita, T., Yamaguchi, K. & Aida, T. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nature Mater. 4, 546–549 (2005).

    CAS  Google Scholar 

  30. 30

    Brabec, C. J. et al. Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010).

    CAS  Google Scholar 

  31. 31

    Beaujuge, P. M., Amb, C. M. & Reynolds, J. R. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 43, 1396–1407 (2010).

    CAS  Google Scholar 

  32. 32

    Wong, W-Y. & Ho, C-L. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Acc. Chem. Res. 43, 1246–1256 (2010).

    CAS  Google Scholar 

  33. 33

    Wong, W-Y. et al. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nature Mater. 6, 521–527 (2007).

    CAS  Google Scholar 

  34. 34

    Wong, W-Y. et al. On the efficiency of polymer solar cells. Nature Mater. 6, 704–705 (2007).

    CAS  Google Scholar 

  35. 35

    Wu, P-T. et al. Organometallic donor–acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties. Macromolecules 42, 671–681 (2009).

    CAS  Google Scholar 

  36. 36

    Tse, C. W. et al. Layer-by-layer deposition of rhenium-containing hyperbranched polymers and fabrication of photovoltaic cells. Chem. Eur. J. 13, 328–335 (2007).

    CAS  Google Scholar 

  37. 37

    Nanjo, M. et al. Donor–acceptor C60-containing polyferrocenylsilanes: synthesis, characterization, and applications in photodiode devices. Adv. Funct. Mater. 18, 470–477 (2008).

    CAS  Google Scholar 

  38. 38

    Wild, A. et al. π-conjugated donor and donor–acceptor metallo-polymers. Macromol. Rapid Commun. 31, 868–874 (2010).

    CAS  Google Scholar 

  39. 39

    Zhou, G-J., Wong, W-Y., Ye, C. & Lin, Z. Optical power limiters based on colorless di-, oligo-, and polymetallaynes: highly transparent materials for eye protection devices. Adv. Funct. Mater. 17, 963–975 (2007).

    Google Scholar 

  40. 40

    Hollins, R. C. Materials for optical limiters. Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).

    CAS  Google Scholar 

  41. 41

    Zhou, G-J., Wong, W-Y., Cui, D. & Ye, C. Large optical-limiting response in some solution-processable polyplatinaynes. Chem. Mater. 17, 5209–5217 (2005).

    CAS  Google Scholar 

  42. 42

    Zhou, G-J., Wong, W-Y., Lin, Z. & Ye, C. White metallopolyynes for optical limiting/transparency trade-off optimization. Angew. Chem. Int. Ed. 45, 6189–6193 (2006).

    CAS  Google Scholar 

  43. 43

    Rakitin, A. et al. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett. 86, 3670–3673 (2001).

    CAS  Google Scholar 

  44. 44

    Tanaka, K. & Shionoya, M. Synthesis of a novel nucleoside for alternative DNA base pairing through metal complexation. J. Org. Chem. 64, 5002–5003 (1999).

    CAS  Google Scholar 

  45. 45

    Meggers, E. et al. A novel copper-mediated DNA base pair. J. Am. Chem. Soc. 122, 10714–10715 (2000).

    CAS  Google Scholar 

  46. 46

    Weizman, H. & Tor, Y. 2,2′-bipyridine ligandoside: a novel building block for modifying DNA with intra-duplex metal complexes. J. Am. Chem. Soc. 123, 3375–3376 (2001).

    CAS  Google Scholar 

  47. 47

    Tanaka, K., Yamada, Y. & Shionoya, M. Formation of silver(I)-mediated DNA duplex and triplex through an alternative base pair of pyridine nucleobases. J. Am. Chem. Soc. 124, 8802–8803 (2002).

    CAS  Google Scholar 

  48. 48

    Takezawa, Y. et al. Soft metal-mediated base pairing with novel synthetic nucleosides possessing an O, S-donor ligand. J. Org. Chem. 73, 6092–6098 (2008).

    CAS  Google Scholar 

  49. 49

    Tanaka, K. et al. Efficient incorporation of a copper hydroxypyridone base pair in DNA. J. Am. Chem. Soc. 124, 12494–12498 (2002).

    CAS  Google Scholar 

  50. 50

    Tanaka, K. et al. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    CAS  Google Scholar 

  51. 51

    Choi, T-L. et al. Synthesis and nonvolatile memory behavior of redox-active conjugated polymer-containing ferrocene. J. Am. Chem. Soc. 129, 9842–9843 (2007).

    CAS  Google Scholar 

  52. 52

    Ling, Q. et al. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Adv. Mater. 17, 455–459 (2005).

    CAS  Google Scholar 

  53. 53

    Ling, Q-D. et al. WORM-type memory device based on a conjugated copolymer containing europium complex in the main chain. Electrochem. Solid-State Lett. 9, G268–G271 (2006).

    CAS  Google Scholar 

  54. 54

    Bates, F. S. Polymer-polymer phase behavior. Science 251, 898–905 (1991).

    CAS  Google Scholar 

  55. 55

    Rider, D. A. et al. Diblock copolymers with amorphous atactic polyferrocenylsilane blocks: synthesis, characterization, and self-assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk state. Macromolecules 38, 6931–6938 (2005).

    CAS  Google Scholar 

  56. 56

    Korczagin, I. et al. Surface nano- and microstructuring with organometallic polymers. Adv. Polym. Sci. 200, 91–117 (2006).

    CAS  Google Scholar 

  57. 57

    Lammertink, R. G. H. et al. Nanostructured thin films of organic-organometallic block copolymers. One-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv. Mater. 12, 98–103 (2000).

    CAS  Google Scholar 

  58. 58

    Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).

    CAS  Google Scholar 

  59. 59

    Chuang, V. P. et al. Templated self-assembly of square symmetry arrays from an abc triblock terpolymer. Nano Lett. 9, 4364–4369 (2009).

    CAS  Google Scholar 

  60. 60

    Rider, D. A. et al. Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). ACS Nano 2, 263–270 (2008).

    CAS  Google Scholar 

  61. 61

    Mejia, M. L., Agapiou, K., Yang, X. & Holliday, B. J. Seeded growth of CdS nanoparticles within a conducting metallopolymer matrix. J. Am. Chem. Soc. 131, 18196–18197 (2009).

    CAS  Google Scholar 

  62. 62

    Shi, W. et al. Single-chain elasticity of poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylphenylsilane). Macromolecules 37, 1839–1842 (2004).

    CAS  Google Scholar 

  63. 63

    Zou, S. et al. Single molecule force spectroscopy of smart poly(ferrocenylsilane) macromolecules: towards highly controlled redox-driven single chain motors. Polymer 47, 2483–2492 (2006).

    CAS  Google Scholar 

  64. 64

    Zou, S., Hempenius, M. A., Schoenherr, H. & Vancso, G. J. Force spectroscopy of individual stimulus-responsive poly(ferrocenyldimethylsilane) chains: towards a redox-driven macromolecular motor. Macromol. Rapid Commun. 27, 103–108 (2006).

    CAS  Google Scholar 

  65. 65

    Robinson, K. L. & Lawrence, N. S. Redox-sensitive copolymer: a single-component pH sensor. Anal. Chem. 78, 2450–2455 (2006).

    CAS  Google Scholar 

  66. 66

    Wang, Z. et al. Covalent attachment of Ru(II) phenanthroline complexes to polythionylphosphazenes: the development and evaluation of single-component polymeric oxygen sensors. Adv. Funct. Mater. 12, 415–419 (2002).

    Google Scholar 

  67. 67

    Payne, S. J., Fiore, G. L., Fraser, C. L. & Demas, J. N. Luminescence oxygen sensor based on a ruthenium(II) star polymer complex. Anal. Chem. 82, 917–921 (2010).

    CAS  Google Scholar 

  68. 68

    Holliday, B. J., Stanford, T. B. & Swager, T. M. Chemoresistive gas-phase nitric oxide sensing with cobalt-containing conducting metallopolymers. Chem. Mater. 18, 5649–5651 (2006).

    CAS  Google Scholar 

  69. 69

    Suzuki, D., Sakai, T. & Yoshida, R. Self-flocculating/self-dispersing oscillation of microgels. Angew. Chem. Int. Ed. 47, 917–920 (2008).

    CAS  Google Scholar 

  70. 70

    Shinohara, S-I. et al. Photoregulated wormlike motion of a gel. Angew. Chem. Int. Ed. 47, 9039–9043 (2008).

    CAS  Google Scholar 

  71. 71

    Puzzo, D. P., Arsenault, A. C., Manners, I. & Ozin, G. A. Electroactive inverse opal: a single material for all colors. Angew. Chem. Int. Ed. 48, 943–947 (2009).

    CAS  Google Scholar 

  72. 72

    Arsenault, A. C., Puzzo, D. P., Manners, I. & Ozin, G. A. Photonic-crystal full-colour displays. Nature Photon. 1, 468–472 (2007).

    CAS  Google Scholar 

  73. 73

    Kim, H-J., Lee, J-H. & Lee, M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed. 44, 5810–5814 (2005).

    CAS  Google Scholar 

  74. 74

    Kim, H-J., Lee, E., Park, H-S. & Lee, M. Dynamic extension-contraction motion in supramolecular springs. J. Am. Chem. Soc. 129, 10994–10995 (2007).

    CAS  Google Scholar 

  75. 75

    Ruiz, M. S., Romerosa, A., Sierra-Martin, B. & Fernandez-Barbero, A. A water soluble diruthenium-gold organometallic microgel. Angew. Chem. Int. Ed. 47, 8665–8669 (2008).

    CAS  Google Scholar 

  76. 76

    Beck, J. B., Ineman, J. M. & Rowan, S. J. Metal/ligand-induced formation of metallo-supramolecular polymers. Macromolecules 38, 5060–5068 (2005).

    CAS  Google Scholar 

  77. 77

    Weng, W., Beck, J. B., Jamieson, A. M. & Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 128, 11663–11672 (2006).

    CAS  Google Scholar 

  78. 78

    Knapton, D., Burnworth, M., Rowan, S. J. & Weder, C. Fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics. Angew. Chem. Int. Ed. 45, 5825–5829 (2006).

    CAS  Google Scholar 

  79. 79

    Vermonden, T. et al. Linear rheology of water-soluble reversible neodymium(III) coordination polymers. J. Am. Chem. Soc. 126, 15802–15808 (2004).

    CAS  Google Scholar 

  80. 80

    Paulusse, J. M. J., van Beek, D. J. M. & Sijbesma, R. P. Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks. J. Am. Chem. Soc. 129, 2392–2397 (2007).

    CAS  Google Scholar 

  81. 81

    Yount, W. C., Loveless, D. M. & Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).

    CAS  Google Scholar 

  82. 82

    South, C. R., Pinon, V. III & Weck, M. Erasable coordination polymer multilayers on gold. Angew. Chem. Int. Ed. 47, 1425–1428 (2008).

    CAS  Google Scholar 

  83. 83

    Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of functional metalloproteins. Nature 460, 855–862 (2009).

    CAS  Google Scholar 

  84. 84

    Fasan, R., Chen, M. M., Crook, N. C. & Arnold, F. H. Engineered alkane-hydroxylating cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew. Chem. Int. Ed. 46, 8414–8418 (2007).

    CAS  Google Scholar 

  85. 85

    Pordea, A. & Ward, T. R. Artificial metalloenzymes: combining the best features of homogeneous and enzymatic catalysis. Synlett. 3225–3236 (2009).

  86. 86

    Collot, J. et al. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. J. Am. Chem. Soc. 125, 9030–9031 (2003).

    CAS  Google Scholar 

  87. 87

    Davies, R. R. et al. Artificial metalloenzymes based on protein cavities: exploring the effect of altering the metal ligand attachment position by site directed mutagenesis. Bioorg. Med. Chem. Lett. 9, 79–84 (1999).

    CAS  Google Scholar 

  88. 88

    Coquiere, D., Bos, J., Beld, J. & Roelfes, G. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold. Angew. Chem. Int. Ed. 48, 5159–5162 (2009).

    CAS  Google Scholar 

  89. 89

    Kurashina, M., Murata, M., Watanabe, T. & Nishihara, H. Synthesis of poly(biphenylene ruthenacyclopentatrienylene), a new organometallic conducting polymer with ferromagnetic interaction in its reduced state. J. Am. Chem. Soc. 125, 12420–12421 (2003).

    CAS  Google Scholar 

  90. 90

    Hui, J. K-H., Yu, Z. & MacLachlan, M. J. Supramolecular assembly of zinc salphen complexes: access to metal-containing gels and nanofibers. Angew. Chem. Int. Ed. 46, 7980–7983 (2007).

    CAS  Google Scholar 

  91. 91

    Lin, N-T. et al. From polynorbornene to the complementary polynorbornene by replication. Angew. Chem. Int. Ed. 46, 4481–4485 (2007).

    CAS  Google Scholar 

  92. 92

    Lou, X. et al. Polymer-based elemental tags for sensitive bioassays. Angew. Chem. Int. Ed. 46, 6111–6114 (2007).

    CAS  Google Scholar 

  93. 93

    Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS  Google Scholar 

  94. 94

    Fiore, G. L. & Fraser, C. L. Iron-centered star polymers with pentablock bipyridine-centered PEG-PCL-PLA macroligands. Macromolecules 41, 7892–7897 (2008).

    CAS  Google Scholar 

  95. 95

    Roberts, R. L. et al. Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Adv. Mater. 21, 2318–2322 (2009).

    CAS  Google Scholar 

  96. 96

    Gaedt, T. et al. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nature Mater. 8, 144–150 (2009).

    CAS  Google Scholar 

  97. 97

    Moughton, A. O. & O'Reilly, R. K. Using metallo-supramolecular block copolymers for the synthesis of higher order nanostructured assemblies. Macromol. Rapid Commun. 31, 37–52 (2010).

    CAS  Google Scholar 

  98. 98

    Wang, X. & McHale, R. Metal-containing polymers: building blocks for functional (nano)materials. Macromol. Rapid Commun. 31, 331–350 (2010).

    Google Scholar 

  99. 99

    Shi, H-F. et al. Simple conjugated polymers with on-chain phosphorescent iridium(III) complexes: toward ratiometric chemodosimeters for detecting trace amounts of mercury(II). Chem. Eur. J. 16, 12158–12167 (2010).

    CAS  Google Scholar 

  100. 100

    Liu, W., Huang, W., Pink, M. & Lee, D. Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport. J. Am. Chem. Soc. 132, 11844–11846 (2010).

    CAS  Google Scholar 

  101. 101

    Ghosh, S. & Defrancq, E. Metal-complex/DNA conjugates: a versatile building block for DNA nanoarrays. Chem. Eur. J. 16, 12780–12787 (2010).

    CAS  Google Scholar 

  102. 102

    Powell, A. B., Bielawski, C. W. & Cowley, A. H. Design, synthesis, and study of main chain poly(N-heterocyclic carbene) complexes: applications in electrochromic devices. J. Am. Chem. Soc. 132, 10184–10194 (2010).

    CAS  Google Scholar 

  103. 103

    Liu, K. et al. Synthesis and lithographic patterning of FePt nanoparticles using a bimetallic metallopolyyne precursor. Angew. Chem. Int. Ed. 47, 1255–1259 (2008).

    CAS  Google Scholar 

  104. 104

    Paquet, C., Cyr, P. W., Kumacheva, E. & Manners, I. Rationalized approach to molecular tailoring of polymetallocenes with predictable optical properties. Chem. Mater. 16, 5202–5211 (2004).

    Google Scholar 

  105. 105

    Tamura, K. et al. Charge/discharge properties of organometallic batteries fabricated with ferrocene-containing polymers. Macromol. Rapid Commun. 29, 1944–1949 (2008).

    CAS  Google Scholar 

  106. 106

    Duprez, V., Biancardo, M., Spanggaard, H. & Krebs, F. C. Synthesis of conjugated polymers containing terpyridine-ruthenium complexes: photovoltaic applications. Macromolecules 38, 10436–10448 (2005).

    CAS  Google Scholar 

  107. 107

    Haque, S. A. et al. Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure–function relationship. Angew. Chem. Int. Ed. 44, 5740–5744 (2005).

    CAS  Google Scholar 

  108. 108

    Hager, M. D. et al. Self-healing materials. Adv. Mater. 22, 5424–5430 (2010).

    CAS  Google Scholar 

  109. 109

    Cordier, P., Tournilhac, F., Soulié- Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Google Scholar 

  110. 110

    Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    CAS  Google Scholar 

  111. 111

    Hofmeier, H. & Schubert, U. S. Supramolecular branching and crosslinking of terpyridine-modified copolymers: complexation and decomplexation studies in diluted solution. Macromol. Chem. Phys. 204, 1391–1397 (2003).

    CAS  Google Scholar 

  112. 112

    Kersey, F. R., Loveless, D. M. & Craig, S. L. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J. R. Soc. Interface 4, 373–380 (2007).

    CAS  Google Scholar 

  113. 113

    Wang, F. et al. Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. Angew. Chem. Int. Ed. 49, 1090–1094 (2010).

    CAS  Google Scholar 

  114. 114

    Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

    Google Scholar 

  115. 115

    De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    CAS  Google Scholar 

  116. 116

    Caseri, W. R. et al. “(Hot-)water-proof”, semiconducting, platinum-based chain structures: processing, products, and properties. Adv. Mater. 15, 125–129 (2003).

    CAS  Google Scholar 

  117. 117

    Dobrawa, R. & Würthner, F. Metallosupramolecular approach toward functional coordination polymers. J. Polym. Sci. A 43, 4981–4995 (2005).

    CAS  Google Scholar 

  118. 118

    Kurth, D. G. & Higuchi, M. Transition metal ions: weak links for strong polymers. Soft Matter 2, 915–927 (2006).

    CAS  Google Scholar 

  119. 119

    Knapton, D., Rowan, S. J. & Weder, C. Synthesis and properties of metallo-supramolecular poly(p-phenylene ethynylene)s. Macromolecules 39, 651–657 (2006).

    CAS  Google Scholar 

  120. 120

    Wheaton, C. A. & Puddephatt, R. J. A coordination polymer of gold(I) with heterotactic architecture and a comparison of the structures of isotactic, syndiotactic, and heterotactic isomers. Angew. Chem. Int. Ed. 46, 4461–4463 (2007).

    CAS  Google Scholar 

  121. 121

    Chow, C-F., Fujii, S. & Lehn, J-M. Metallodynamers: neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. Angew. Chem. Int. Ed. 46, 5007–5010 (2007).

    CAS  Google Scholar 

  122. 122

    Shunmugam, R., Gabriel, G. J., Aamer, K. A. & Tew, G. N. Metal-ligand-containing polymers: terpyridine as the supramolecular unit. Macromol. Rapid Commun. 31, 784–793 (2010).

    CAS  Google Scholar 

  123. 123

    Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater. 10, 14–27 (2011).

    CAS  Google Scholar 

  124. 124

    Astruc, D. & Chardac, F. Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 101, 2991–3024 (2001).

    CAS  Google Scholar 

  125. 125

    Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ulrich S. Schubert or Ian Manners.

Ethics declarations

Competing interests

Ian Manners is associated with Opalux Inc. as a scientific advisor. He is a coinventor of the technology illustrated in Figure 6b and c, which Opalux are developing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whittell, G., Hager, M., Schubert, U. et al. Functional soft materials from metallopolymers and metallosupramolecular polymers. Nature Mater 10, 176–188 (2011). https://doi.org/10.1038/nmat2966

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing