Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bottom-up realization of a porous metal–organic nanotubular assembly

Abstract

Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states1,2,3,4,5,6,7,8,9,10. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules11,12,13,14. Here, we show the successful creation of an assembly of infinite square prism-shaped metal–organic nanotubes obtained from the simple polymerization of a square-shaped metal–organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of ‘charge-density wave (CDW) quartets’ on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rational design for the metal–organic nanotube.
Figure 2: Experimental confirmation of the porosity.
Figure 3: Clarification of the electronic structure of 1.
Figure 4: Theoretical approach for the electronic ground-state of 1.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  3. Wildöer, J. W. G. et al. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  Google Scholar 

  4. Odom, T. W., Huang, J., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

    Article  CAS  Google Scholar 

  5. Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).

    Article  CAS  Google Scholar 

  6. Chopra, N. S. et al. Boron nitride nanotubes. Science 269, 966–967 (1995).

    Article  CAS  Google Scholar 

  7. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992).

    Article  CAS  Google Scholar 

  8. Rosenfeld Hacohen, Y., Grunbaum, E., Tenne, R., Solan, J. & Hutchison, J. L. Cage structures and nanotubes of NiCl2 . Nature 395, 336–337 (1998).

    Article  Google Scholar 

  9. Remskar, M. et al. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479–481 (2001).

    Article  CAS  Google Scholar 

  10. Tang, C., Bando, Y., Golberg, D. & Ma, R. Cerium phosphate nanotubes: Synthesis, valence state, and optical properties. Angew. Chem. Int. Ed. 44, 576–579 (2005).

    Article  CAS  Google Scholar 

  11. Fujita, M., Tominaga, M., Hori, A & Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 371–380 (2005).

    Article  Google Scholar 

  12. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  13. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  14. Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  CAS  Google Scholar 

  15. Fujita, M., Yazaki, J. & Ogura, K. Spectroscopic observation of self-assembly of a macrocyclic tetranuclear complex composed of Pt2+ and 4,4-bipyridine. Chem. Lett. 20, 1031–1032 (1991).

    Article  Google Scholar 

  16. Keller, H. J. & Martin, D. S. Jr in Extended Linear Chain Compounds vol. 1 (ed. Miller, J. S.) 357–448 (Plenum, 1982).

    Book  Google Scholar 

  17. Kishida, K. et al. Gigantic optical nonlinearity in one-dimensional Mott–Hubbard insulators. Nature 405, 929–932 (2000).

    Article  CAS  Google Scholar 

  18. Takaishi, S. et al. Charge-density-wave to Mott–Hubbard phase transition in quasi-one-dimensional bromo-bridged Pd compounds. J. Am. Chem. Soc. 130, 12080–12084 (2008).

    Article  CAS  Google Scholar 

  19. Kobayashi, A. & Kitagawa, H. Mixed-valence two-legged MX-ladder complex with a pair of out-of-phase charge-density waves. J. Am. Chem. Soc. 128, 12066–12067 (2006).

    Article  CAS  Google Scholar 

  20. Kawakami, D. et al. Halogen-bridged PtII/PtIV mixed-valence ladder compounds. Angew. Chem. Int. Ed. 45, 7214–7217 (2006).

    Article  CAS  Google Scholar 

  21. Kimizuka, N., Lee, S. H. & Kunitake, T. Molecular dispersion of chains in the mixed-valence complexes [M(en)2][MCl2(en)2] (M: Pt, Pd, Ni) and anionic amphiphiles in organic media. Angew. Chem. Int. Ed. 39, 389–391 (2000).

    Article  CAS  Google Scholar 

  22. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  23. Azuma, M., Hiroi, Z., Takano, M., Ishida, K. & Kitaoka, Y. Observation of a spin gap in SrCu2O3 comprising spin-1/2 quasi-1D two-leg ladders. Phys. Rev. Lett. 73, 3463–3466 (1994).

    Article  CAS  Google Scholar 

  24. Hiroi, Z. & Takano, M. Absence of superconductivity in the doped antiferromagnetic spin-ladder compound (La,Sr)CuO2.5 . Nature 377, 41–43 (1995).

    Article  CAS  Google Scholar 

  25. Blumberg, G. et al. Sliding density wave in Sr14Cu24O41 ladder compounds. Science 297, 584–587 (2002).

    Article  CAS  Google Scholar 

  26. Ozaki, M. Group theoretical analysis of the Hartree–Fock–Bogoliubov equation. I. General theory. J. Math. Phys. 26, 1514–1520 (1985).

    Article  Google Scholar 

  27. Wakabayashi, Y. et al. Spatial correlations in the valence of metal ions in Ni1−xPdx(chxn)2Br. J. Phys. Soc. Jpn 68, 3948–3952 (1999).

    Article  CAS  Google Scholar 

  28. Wakabayashi, Y. et al. Direct determination of low-dimensional structures: Synchrotron X-ray scattering on one-dimensional charge-ordered MMX-chain complexes. J. Am. Chem. Soc. 128, 6676–6682 (2006).

    Article  CAS  Google Scholar 

  29. Ohara, J. & Yamamoto, S. Competing ground states of a Peierls–Hubbard nanotube. Europhys. Lett. 87, 17006 (2009).

    Article  Google Scholar 

  30. Yamamoto, S. & Ohara, J. Optical characterization of platinum-halide ladder compounds. Phys. Rev. B 76, 235116 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Synchrotron XRPD and diffuse X-ray scattering measurements were supported by High Energy Accelerator Research Organization (KEK), Japan (Proposal no. 2008G068). Synchrotron XAFS measurements were supported by Japan Synchrotron Radiation Research Institute (JASRI) (Proposal no. 2010B1975). This work was partly supported by Research Fellowships for Young Scientists (No. 1910614) from the JSPS. H.O. is grateful for support by a Grant-in-Aid for Scientific Research (No. 20110005) by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and K.O. designed and directed this study, and analysed the experimental results. K.O. contributed to all of the experimental work. Y.W. carried out synchrotron diffuse X-ray scattering measurements. J.O. and S.Y. conducted theoretical calculations. H.M. and H.O. contributed to single-crystal reflectance spectroscopy. K.N. and T.U. carried out synchrotron XAFS measurements. K.O., Y.W., J.O., S.Y. and H.K. co-wrote the manuscript. All authors commented on the paper.

Corresponding authors

Correspondence to Kazuya Otsubo or Hiroshi Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otsubo, K., Wakabayashi, Y., Ohara, J. et al. Bottom-up realization of a porous metal–organic nanotubular assembly. Nature Mater 10, 291–295 (2011). https://doi.org/10.1038/nmat2963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing