Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses


Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis of ICMVs.
Figure 2: Protein encapsulation and release from ICMVs.
Figure 3: In vitro stimulation of immune responses by ICMVs supplemented with the TLR agonist MPLA.
Figure 4: In vivo immunization with ICMVs versus soluble antigen or antigen encapsulated in non-crosslinked vesicles.
Figure 5: ICMVs carrying antigen in the aqueous core and MPLA embedded in the vesicle walls elicit potent antibody and CD8T responses.


  1. 1

    Guy, B. The perfect mix: Recent progress in adjuvant research. Nature Rev. Microbiol. 5, 505–517 (2007).

    CAS  Google Scholar 

  2. 2

    Perrie, Y., Mohammed, A. R., Kirby, D. J., McNeil, S. E. & Bramwell, V. W. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364, 272–280 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Reed, S. G., Bertholet, S., Coler, R. N. & Friede, M. New horizons in adjuvants for vaccine development. Trends Immunol. 30, 23–32 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Walker, B. D. & Burton, D. R. Toward an AIDS vaccine. Science 320, 760–764 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Haglund, K. et al. Robust recall and long-term memory T-cell responses induced by prime-boost regimens with heterologous live viral vectors expressing human immunodeficiency virus type 1 Gag and Env proteins. J. Virol. 76, 7506–7517 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Flatz, L. et al. Development of replication-defective lymphocytic choriomeningitis virus vectors for the induction of potent CD8+ T cell immunity. Nature Med. 16, 339–345 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Brave, A., Ljungberg, K., Wahren, B. & Liu, M. A. Vaccine delivery methods using viral vectors. Mol. Pharm. 4, 18–32 (2007).

    Article  Google Scholar 

  8. 8

    Priddy, F. H. et al. Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults. Clin. Infect. Dis. 46, 1769–1781 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Hubbell, J. A., Thomas, S. N. & Swartz, M. A. Materials engineering for immunomodulation. Nature 462, 449–460 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Heath, W. R. & Carbone, F. R. Cross-presentation in viral immunity and self-tolerance. Nature Rev. Immunol. 1, 126–134 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Kwon, Y. J., James, E., Shastri, N. & Frechet, J. M. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc. Natl Acad. Sci. USA 102, 18264–18268 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Hamdy, S. et al. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. A 81, 652–662 (2007).

    Article  Google Scholar 

  13. 13

    Heit, A., Schmitz, F., Haas, T., Busch, D. H. & Wagner, H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol. 37, 2063–2074 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Schlosser, E. et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 26, 1626–1637 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Heffernan, M. J., Kasturi, S. P., Yang, S. C., Pulendran, B. & Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30, 910–918 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Demento, S. L. et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27, 3013–3021 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol. 25, 1159–1164 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug Discov. 4, 145–160 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Gregoriadis, G., Gursel, I., Gursel, M. & McCormack, B. Liposomes as immunological adjuvants and vaccine carriers. J. Control. Release 41, 49–56 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Jeong, J. M., Chung, Y. C. & Hwang, J. H. Enhanced adjuvantic property of polymerized liposome as compared to a phospholipid liposome. J. Biotechnol. 94, 255–263 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Vangala, A. et al. Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J. Control. Release 119, 102–110 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Steers, N. J., Peachman, K. K., McClain, S., Alving, C. R. & Rao, M. Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4+ T-cells, memory CD8+ T-cells, and pro-inflammatory cytokines. Vaccine 27, 6939–6949 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Bhowmick, S., Mazumdar, T., Sinha, R. & Ali, N. Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J. Control. Release 141, 199–207 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Reddy, R., Zhou, F., Nair, S., Huang, L. & Rouse, B. T. In vivo cytotoxic T lymphocyte induction with soluble proteins administered in liposomes. J. Immunol. 148, 1585–1589 (1992).

    CAS  Google Scholar 

  25. 25

    Collins, D. S., Findlay, K. & Harding, C. V. Processing of exogenous liposome-encapsulated antigens in vivo generates class I MHC-restricted T cell responses. J. Immunol. 148, 3336–3341 (1992).

    CAS  Google Scholar 

  26. 26

    Wakita, D. et al. An indispensable role of type-1 IFNs for inducing CTL-mediated complete eradication of established tumor tissue by CpG-liposome co-encapsulated with model tumor antigen. Int. Immunol. 18, 425–434 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Popescu, M. C. et al. A novel proteoliposomal vaccine elicits potent antitumor immunity in mice. Blood 109, 5407–5410 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Allen, T. M., Mumbengegwi, D. R. & Charrois, G. J. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin. Cancer. Res. 11, 3567–3573 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Cashion, M. P. & Long, T. E. Biomimetic design and performance of polymerizable lipids. Acc. Chem. Res. 42, 1016–1025 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Hotz, J. & Meier, W. Vesicle-templated polymer hollow spheres. Langmuir 14, 1031–1036 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Mahadevan, S. & Tappel, A. L. Lysosomal lipases of rat liver and kidney. J. Biol. Chem. 243, 2849–2854 (1968).

    CAS  Google Scholar 

  32. 32

    Papahadjopoulos, D., Nir, S. & Duzgunes, N. Molecular mechanisms of calcium-induced membrane fusion. J. Bioenerg. Biomembr. 22, 157–179 (1990).

    CAS  Article  Google Scholar 

  33. 33

    Zauner, W., Farrow, N. A. & Haines, A. M. In vitro uptake of polystyrene microspheres: Effect of particle size, cell line and cell density. J. Control. Release 71, 39–51 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Mohammed, A. R., Bramwell, V. W., Coombes, A. G. & Perrie, Y. Lyophilisation and sterilisation of liposomal vaccines to produce stable and sterile products. Methods 40, 30–38 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Girard, P. et al. A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87, 419–429 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Lutsiak, M. E., Robinson, D. R., Coester, C., Kwon, G. S. & Samuel, J. Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm. Res. 19, 1480–1487 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Huisgen, R. Cycloadditions—definition classification and characterization. Angew. Chem. Int. Ed. 7, 321 (1968).

    CAS  Article  Google Scholar 

  38. 38

    Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Allen, T. M. & Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 303, 1818–1822 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Mundargi, R. C., Babu, V. R., Rangaswamy, V., Patel, P. & Aminabhavi, T. M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release 125, 193–209 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Vasir, J. K. & Labhasetwar, V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv. Rev. 59, 718–728 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Gabizon, A. et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54, 987–992 (1994).

    CAS  Google Scholar 

  43. 43

    Kirby, C. & Gregoriadis, G. Dehydration–rehydration vesicles—a simple method for high-yield drug entrapment in liposomes. Bio/Technology 2, 979–984 (1984).

    CAS  Google Scholar 

  44. 44

    Bershteyn, A. et al. Polymer-supported lipid shells, onions, and flowers. Soft Matter 4, 1787–1791 (2008).

    CAS  Article  Google Scholar 

  45. 45

    McKee, A. S., Munks, M. W. & Marrack, P. How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27, 687–690 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Mata-Haro, V. et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628–1632 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R. & Germain, R. N. Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Yadava, A. et al. A novel chimeric Plasmodium vivax circumsporozoite protein induces biologically functional antibodies that recognize both VK210 and VK247 sporozoites. Infect. Immun. 75, 1177–1185 (2007).

    CAS  Article  Google Scholar 

  50. 50

    Ellman, G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by the Ragon Institute of MGH, MIT and Harvard, the Gates Foundation, the Department. of Defense (contract W911NF-07-D-0004) and the National Institutes of Health (P41RR002250 and RC2GM092599). The authors would like to thank A. Yadava for providing the VMP antigen. D.J.I. is an investigator of the Howard Hughes Medical Institute.

Author information




J.J.M. and D.J.I. designed the experiments. J.J.M. carried out the experiments; H.S. assisted in the in vivo characterization and immunization studies. A.B., H.K., J.T.G., J.R. and W.C. contributed cryoelectron microscope imaging. M.T.S. and S.H.U. contributed experimental suggestions. H.L., B.H., M.S. and S.L. provided technical support. J.J.M. and D.J.I. analysed the data and wrote the paper.

Corresponding author

Correspondence to Darrell J. Irvine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7239 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moon, J., Suh, H., Bershteyn, A. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Mater 10, 243–251 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing