Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mesophase behaviour of polyhedral particles

Abstract

Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid–mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effect of shape anisotropy on hard-particle mesophase order.
Figure 2: Summary of equilibrium structures for different SFPs.
Figure 3: Phase behaviour of shapes with low anisotropy and high symmetry.
Figure 4: Phase and structural behaviour of hexagonal prisms.
Figure 5: Phase and structural behaviour of cubes.
Figure 6: Phase behaviour for shapes with high anisotropy and low symmetry.

References

  1. 1

    Whitesides, G. M. & Boncheva, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl Acad. Sci. USA 99, 4769–4774 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Glotzer, S. G. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  3. 3

    Frenkel, D. Soft condensed matter. Physica A 313, 1–31 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Tuteja, A., Mackay, M. E., Narayanan, S., Asokan, S. & Wong, M. S. Breakdown of the continuum Stokes–Einstein relation for nanoparticle diffusion. Nano Lett. 7, 1276–1281 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Lee, Y. S., Wetzel, E. D. & Wagner, N. J. The ballistic impact characteristics of kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38, 2825–2833 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Veerman, J. A. C. & Frenkel, D. Phase-behaviour of disk-like hard-core mesogens. Phys. Rev. A 45, 5632–5648 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Camp, P. J. & Allen, M. P. Phase diagram of the hard biaxial ellipsoid fluid. J. Chem. Phys. 106, 6681–6689 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Zhang, Z., Tang, Z., Kotov, N. A. & Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 7, 1670–1675 (2007).

    CAS  Article  Google Scholar 

  11. 11

    John, B. S., Stroock, A. & Escobedo, F. A. Cubatic liquid-crystalline behaviour in a system of hard cuboids. J. Chem. Phys. 120, 9383–9389 (2004).

    CAS  Article  Google Scholar 

  12. 12

    John, B. S. & Escobedo, F. A. Phase behaviour of colloidal hard tetragonal parallelepipeds (cuboids): A Monte Carlo simulation study. J. Phys. Chem. B 109, 23008–23015 (2005).

    CAS  Article  Google Scholar 

  13. 13

    John, B. S. & Escobedo, F. A. Phase behaviour of colloidal hard perfect tetragonal parallelepipeds. J. Chem. Phys. 128, 044909 (2008).

    Article  Google Scholar 

  14. 14

    Yin, J. S. & Wang, Z. L. Ordered self-assembly of tetrahedral oxide nanocrystal. Phys. Rev. Lett. 79, 2570–2573 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Maeda, H. & Maeda, Y. Liquid crystal formation in suspensions of hard rodlike colloidal particles: Direct observation of particle arrangement and self-ordering behaviour. Phys. Rev. Lett. 90, 018303 (2003).

    Article  Google Scholar 

  16. 16

    Jiao, Y., Stillinger, F. H. & Torquato, S. Optimal packing of superballs. Phys. Rev. E 79, 041309 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Steinhaus, H. Mathematical Snapshots (Oxford Univ. Press, 1999).

    Google Scholar 

  19. 19

    Chen, E. R., Engel, M. & Glotzer, S. C. Dense crystalline dimer packings of regular tetrahedra. Discrete Comput. Geom. 44, 253–280 (2010).

    Article  Google Scholar 

  20. 20

    Torquato, S. & Jiao, Y. Exact constructions of a family of dense periodic packings of tetrahedra. Phys. Rev. E 81, 041310 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Miller, W. Symmetry Groups and their Applications (Academic Press, 1972).

    Google Scholar 

  22. 22

    Miller, W. L., Bozorgui, B. & Cacciuto, A. Crystallization of hard aspherical particles. J. Chem. Phys. 132, 134901 (2010).

    Article  Google Scholar 

  23. 23

    Barnard, A. S., Lin, X. M. & Curtiss, L. A. Equilibrium morphology of face-centred cubic gold nanoparticles >3 nm and the shape change induced by temperature. J. Phys. Chem. B 109, 24465–24472 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Liu, Y. et al. ZnO hexagonal prisms grown into p-Si(1 1 1) substrate from poly(vinylpyrrolidone) assisted electrochemical assembly. J. Cryst. Growth 290, 405–409 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Millstone, J. E., Hurst, S. J., Mètraux, G. S., Cutler, J. I. & Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 5, 646–664 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 783–805 (1983).

    Article  Google Scholar 

  28. 28

    Mau, S. C. & Huse, D. A. Stacking entropy of hard-sphere crystals. Phys. Rev. E 59, 4396–4401 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Lechner, W. & Dellago, C. Accurate determination of crystal structure based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  Google Scholar 

  30. 30

    Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Blaak, R., Frenkel, D. & Mulder, B. M. Do cylinders exhibit a cubatic phase? J. Chem. Phys. 110, 11652–11659 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Batten, R. D., Stillinger, F. H. & Torquato, S. Phase behaviour of colloidal superballs: Shape interpolation from spheres to cubes. Phys. Rev. E 81, 061105 (2010).

    Article  Google Scholar 

  33. 33

    Noya, E. G., Vega, C. & Miguel, E. Determination of the melting point of hard spheres from direct coexistence simulation methods. J. Chem. Phys. 128, 154507 (2008).

    Article  Google Scholar 

  34. 34

    Inchbald, G. Five space-filling polyhedral. Math. Gaz. 80, 466–475 (1996).

    Article  Google Scholar 

  35. 35

    Goldberg, M. Several new space-filling polyhedra. Geometriae Dedicata 5, 517–523 (1976).

    Article  Google Scholar 

  36. 36

    Choi, S. Y., Lee, Y. J., Park, Y. S., Ha, K. & Yoon, K. B. Monolayer assembly of zeolite crystals on glass with fullerene as the covalent linker. J. Am. Chem. Soc. 122, 5201–5209 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Zhang, H. T., Wu, G. & Chen, X. H. Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 21, 4281–4282 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Golshtein, E. G. & Tretyakov, N. V. Modified Lagrangians and Monotone Maps in Optimization (Wiley, 1996).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Department of Energy Basic Energy Science Grant ER46517. This publication is based on work supported in part by award no. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST).

Author information

Affiliations

Authors

Contributions

U.A. and F.A.E. planned the research, analysed the data and wrote/revised the manuscript. U.A. carried out the simulations. F.A.E. outlined the initial project.

Corresponding author

Correspondence to Fernando A. Escobedo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3710 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agarwal, U., Escobedo, F. Mesophase behaviour of polyhedral particles. Nature Mater 10, 230–235 (2011). https://doi.org/10.1038/nmat2959

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing