Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An octave-bandwidth negligible-loss radiofrequency metamaterial

An Erratum to this article was published on 21 February 2011

This article has been updated

Abstract

Metamaterials provide an unprecedented ability to manipulate electromagnetic waves and are an enabling technology for new devices ranging from flat lenses that focus light beyond the diffraction limit to coatings capable of cloaking an object. Nevertheless, narrow bandwidths and high intrinsic losses arising from the resonant properties of metamaterials have raised doubts about their usefulness. New design approaches seek to turn the perceived disadvantages of dispersion into assets that enhance a device’s performance. Here we employ dispersion engineering of metamaterial properties to enable specific device performance over usable bandwidths. In particular, we design metamaterials that considerably improve conventional horn antennas over greater than an octave bandwidth with negligible loss and advance the state of the art in the process. Fabrication and measurement of a metahorn confirm its broadband, low-loss performance. This example illustrates the power of clever implementation combined with dispersion engineering to bring metamaterials into their full potential for revolutionizing practical devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A horn antenna feeding a satellite reflector antenna.
Figure 2: Broadband hybrid-mode metamaterial liner design.
Figure 3: Comparison of the internal structure, aperture fields and radiation patterns for unlined, trifurcated and metamaterial-lined horn antennas at 5.85 GHz.
Figure 4: Metamaterial liner geometry, properties and incorporation into a rectangular horn antenna.
Figure 5: Measured versus simulated radiation patterns across the extended C band.

Change history

  • 03 February 2011

    In the version of this Article originally published online, the values on the y-axis of Fig. 2d were incorrectly aligned. This error has now been corrected in all versions of the text.

References

  1. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Article  Google Scholar 

  2. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  Google Scholar 

  3. Klein, M. W., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Single-slit split-ring resonators at optical frequencies: Limits of size scaling. Opt. Lett. 31, 1259–1261 (2006).

    CAS  Article  Google Scholar 

  4. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    CAS  Article  Google Scholar 

  5. Bossard, J. A., Yun, S., Werner, D. H. & Mayer, T. S. Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms. Opt. Express 17, 14771–14779 (2009).

    CAS  Article  Google Scholar 

  6. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Article  Google Scholar 

  7. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    CAS  Article  Google Scholar 

  8. Kwon, D-H. & Werner, D. H. Transformation electromagnetics: An overview of the theory and its application. IEEE Antennas Propag. Mag. 52, 24–26 (2010).

    Article  Google Scholar 

  9. Kwon, D-H. & Werner, D. H. Transformation optical designs for wave collimators, flat lenses, and right-angle bends. New J. Phys. 10, 115023/1-13 (2008).

    Article  Google Scholar 

  10. Narimanov, E. E. & Kildishev, A. V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

    Article  Google Scholar 

  11. Eleftheriades, G. V. & Balmain, K. G. Negative-Refraction Metamaterials: Fundamental Principles and Applications (John Wiley and IEEE Press, 2005).

    Book  Google Scholar 

  12. Ziolkowski, R. W. & Peng, J. Metamaterial-based dispersion engineering to achieve high fidelity output pulses from a log-periodic dipole array. IEEE Trans. Antennas Propag. 56, 3619–3629 (2008).

    Article  Google Scholar 

  13. Caloz, C., Sanada, A. & Itoh, T. A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microw. Theory Tech. 52, 980–992 (2004).

    Article  Google Scholar 

  14. Caloz, C. & Itoh, T. Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications (Wiley and IEEE Press, 2006).

    Google Scholar 

  15. Zouhdi, S., Sihvola, A. & Vinogradov, A. P. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer Science+BusinessMedia, 2009).

    Book  Google Scholar 

  16. Gupta, S. & Caloz, C. Analog signal processing in transmission line metamaterial structures. Radioengineering 18, 155–167 (2009).

    Google Scholar 

  17. Zheludev, N. I. The road ahead for metamaterials. Science 328, 582–583 (2010).

    CAS  Article  Google Scholar 

  18. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    CAS  Article  Google Scholar 

  19. Balanis, C. A. Antenna Theory: Analysis and Design (John Wiley, 2005).

    Google Scholar 

  20. Lier, E. & Kildal, P. S. Soft and hard horn antennas. IEEE Trans. Antennas Propagat. 36, 1152–1157 (1988).

    Google Scholar 

  21. Lier, E. A dielectric hybrid mode antenna feed: A simple alternative to the corrugated horn. IEEE Trans. Antennas Propagat. 34, 21–29 (1986).

    Article  Google Scholar 

  22. Clarricoats, P. J. D. & Oliver, A. D. Corrugated Horns for Microwave Antennas (Peter Peregrinus, IEE, 1984).

    Book  Google Scholar 

  23. Peace, G. M. & Swartz, E. E. Amplitude compensated horn antenna. Microwave J. 7, 66–68 (1964).

    Google Scholar 

  24. Lier, E. & Shaw, R. K. Design and simulation of metamaterial-based hybrid-mode horn antennas. Electron. Lett. 44, 1444–1445 (2008).

    Article  Google Scholar 

  25. Lier, E. & Katz, A. US patent 7,629,937 (2009).

  26. Rotman, W. Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. Antennas Propag. 10, 82–95 (1962).

    Article  Google Scholar 

  27. Minnett, H. C. & Thomas, B. MacA. A method of synthesizing radiation patterns with axial symmetry. IEEE Trans. Antennas Propag. 14, 654–656 (1966).

    Article  Google Scholar 

  28. Munk, B. A. Frequency Selective Surfaces: Theory and Design (John Wiley, 2000).

    Book  Google Scholar 

  29. Haupt, R. L. & Werner, D. H. Genetic Algorithms in Electromagnetics (John Wiley, 2007).

    Book  Google Scholar 

  30. Kildal, P. S. Artificially soft and hard surfaces in electromagnetics. IEEE Trans. Antennas Propag. 38, 1537–1544 (1990).

    Article  Google Scholar 

  31. Liu, K., Balanis, C. A., Birtcher, C. R. & Barber, G. C. Analysis of pyramidal horn antennas using moment methods. IEEE Trans. Antennas Propag. 41, 1379–1389 (1993).

    Article  Google Scholar 

  32. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexópolous, N. G. & Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was funded by Lockheed Martin under the University Research Initiative (URI) program.

Author information

Authors and Affiliations

Authors

Contributions

E.L. conceived the soft-metahorn applications and concept for implementation and made measurements. D.H.W. supervised the project and contributed to the metamaterial-liner design concepts. C.P.S. built the metamaterial liner and carried out simulations of the metahorn. Q.W. designed the metamaterial liners. J.A.B. analysed data and authored most of the paper.

Corresponding authors

Correspondence to Erik Lier or Douglas H. Werner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 751 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lier, E., Werner, D., Scarborough, C. et al. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nature Mater 10, 216–222 (2011). https://doi.org/10.1038/nmat2950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2950

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing