Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A damage-tolerant glass

Abstract

Owing to a lack of microstructure, glassy materials are inherently strong but brittle, and often demonstrate extreme sensitivity to flaws. Accordingly, their macroscopic failure is often not initiated by plastic yielding, and almost always terminated by brittle fracture. Unlike conventional brittle glasses, metallic glasses are generally capable of limited plastic yielding by shear-band sliding in the presence of a flaw, and thus exhibit toughness–strength relationships that lie between those of brittle ceramics and marginally tough metals. Here, a bulk glassy palladium alloy is introduced, demonstrating an unusual capacity for shielding an opening crack accommodated by an extensive shear-band sliding process, which promotes a fracture toughness comparable to those of the toughest materials known. This result demonstrates that the combination of toughness and strength (that is, damage tolerance) accessible to amorphous materials extends beyond the benchmark ranges established by the toughest and strongest materials known, thereby pushing the envelope of damage tolerance accessible to a structural metal.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Amorphous structure of the Pd79Ag3.5P6Si9.5Ge2 glass.
Figure 2: Tensile test of the Pd79Ag3.5P6Si9.5Ge2 glass.
Figure 3: Fracture toughness measurements of the Pd79Ag3.5P6Si9.5Ge2 glass.
Figure 4: Shear-sliding mechanism governing metallic-glass toughness.
Figure 5: Ashby map of the damage tolerance (toughness versus strength) of materials.

References

  1. Launey, M. E. & Ritchie, R. O. On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009).

    CAS  Article  Google Scholar 

  2. Ritchie, R. O. The quest for stronger, tougher materials. Science 320, 448 (2008).

    CAS  Article  Google Scholar 

  3. Hofmann, D. C. et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008).

    CAS  Article  Google Scholar 

  4. Ashby, M. F. & Greer, A. L. Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006).

    CAS  Article  Google Scholar 

  5. Lewandowski, J. J. et al. Intrinsic plasticity or brittleness of metallic glasses. Phil. Mag. Lett. 85, 77–87 (2005).

    CAS  Article  Google Scholar 

  6. Xu, J. et al. The fracture toughness of bulk metallic glasses. JOM 62, 10–18 (2010).

    CAS  Article  Google Scholar 

  7. Xi, X. K. et al. Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).

    CAS  Article  Google Scholar 

  8. Hess, P. A. et al. Indentation fracture toughness of amorphous steel. J. Mater. Res. 20, 783–786 (2005).

    CAS  Article  Google Scholar 

  9. Schroers, J. & Johnson, W. L. Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  10. Suh, J-Y. et al. Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982–990 (2010).

    CAS  Article  Google Scholar 

  11. Gu, X. J. et al. Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Mater. 58, 1708–1720 (2010).

    CAS  Article  Google Scholar 

  12. Inoue, A. et al. Cobalt based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater. 2, 661–663 (2003).

    CAS  Article  Google Scholar 

  13. Conner, R. D. et al. Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904–911 (2003).

    CAS  Article  Google Scholar 

  14. Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    CAS  Article  Google Scholar 

  15. Bouchaud, E. et al. Fracture through cavitation in a metallic glass. Europhys. Lett. 83, 66006 (2008).

    Article  Google Scholar 

  16. Duwez, P. et al. Amorphous phase in palladium–silicon alloys. J. Appl. Phys. 36, 2267–2269 (1965).

    CAS  Article  Google Scholar 

  17. Chen, H. S. et al. Elastic constants, hardness and their implications to flow properties of metallic glasses. J. Non-Cryst. Solids 18, 157–171 (1975).

    CAS  Article  Google Scholar 

  18. Chen, H. S. & Turnbull, D. Formation, stability, and structure of palladium–silicon based alloy glasses. Acta Metall. 17, 1021–1031 (1969).

    CAS  Article  Google Scholar 

  19. Kimura, H. & Masumoto, T. Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending test. 1. Model mechanics of inhomogeneous plastic-flow in non-strain hardening solid. Acta Metall. 28, 1663–1675 (1980).

    CAS  Article  Google Scholar 

  20. Kimura, H. & Masumoto, T. Deformation and fracture of an amorphous Pd–Cu–Si alloy in V-notch bending test. 2. Ductile–brittle transition. Acta Metall. 28, 1677–1693 (1980).

    CAS  Google Scholar 

  21. Launey, M. E. et al. Fracture toughness and crack resistance curve behavior in metallic glass matrix composites. Appl. Phys. Lett. 94, 241910 (2009).

    Article  Google Scholar 

  22. Shih, C. F. Relationships between the J-integral and the crack opening displacement for stationary and extending cracks. J. Mech. Phys. Solids 29, 305–326 (1981).

    Article  Google Scholar 

  23. Hutchinson, J. W. Plastic stress and strain fields at a crack tip. J. Mech. Phys. Solids 16, 337–342 (1968).

    Article  Google Scholar 

  24. Rice, J. R. & Rosengren, G. F. Plane strain deformation near a crack tip in a power-law hardening material. J. Mech. Phys. Solids 16, 1–12 (1968).

    Article  Google Scholar 

  25. Alpas, A. T. et al. Fracture and fatigue crack-propagation in a Ni-base metallic-glass. Metall. Trans. A 20, 1395–1409 (1989).

    Article  Google Scholar 

  26. Flores, K. M. & Dauskardt, R. H. Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scr. Mater. 41, 937–949 (1999).

    CAS  Article  Google Scholar 

  27. Demetriou, M. D. et al. Cooperative shear model for the rheology of glass-forming metallic liquids. Phys. Rev. Lett. 97, 065502 (2006).

    Article  Google Scholar 

  28. Johnson, W. L. et al. Rheology and ultrasonic properties of metallic glass-forming liquids. MRS Bull. 32, 644–650 (2007).

    CAS  Article  Google Scholar 

  29. Ashby, M. F. Materials Selection in Mechanical Design (Pergamon, 1992).

    Google Scholar 

  30. Nouri, A. S. et al. Chemistry (intrinsic) and inclusion (extrinsic) effects on the toughness and Weibull modulus of Fe-based bulk metallic glasses. Phil. Mag. Lett. 88, 853–861 (2008).

    Article  Google Scholar 

  31. Demetriou, M. D. et al. Glassy steel optimized for glass-forming ability and toughness. Appl. Phys. Lett. 92, 161910 (2008).

    Article  Google Scholar 

  32. Kawashima, A. et al. Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Mater. Trans. 46, 1725–1732 (2005).

    CAS  Article  Google Scholar 

  33. Gilbert, C. J. et al. Fracture toughness and fatigue crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476–478 (1997).

    CAS  Article  Google Scholar 

  34. Lowhaphandu, P. & Lewandowski, J. J. Fracture toughness and notched toughness of bulk amorphous alloy: Zr–Ti–Ni–Cu–Be. Scr. Mater. 38, 1811–1817 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M.D.D., G.G., J.P.S., D.C.H. and W.L.J. acknowledge support by the MRSEC program of the National Science Foundation under award number DMR-0520565 for the alloy development work. M.E.L. and R.O.R. acknowledge support by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under contract number DE-AC02-05CH11231 for the fracture-toughness characterization. The contributions of A. Wiest, J-Y. Suh, M. Floyd, C. Crewdson and C. Garland are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.D.D., M.E.L., W.L.J. and R.O.R. designed the research; M.D.D. developed the alloy; M.D.D., G.G., J.P.S. and D.C.H. characterized the alloy; M.E.L. carried out the mechanical testing; M.D.D., M.E.L., W.L.J. and R.O.R. wrote the manuscript.

Corresponding author

Correspondence to Marios D. Demetriou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1059 kb)

Supplementary Information Movie

Supplementary Movie (MOV 888 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demetriou, M., Launey, M., Garrett, G. et al. A damage-tolerant glass. Nature Mater 10, 123–128 (2011). https://doi.org/10.1038/nmat2930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2930

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing