Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic electronic ratchets doing work

A Corrigendum to this article was published on 17 December 2010

This article has been updated


The possibility to extract work from periodic, undirected forces has intrigued scientists for over a century—in particular, the rectification of undirected motion of particles by ratchet potentials, which are periodic but asymmetric functions. Introduced by Smoluchowski and Feynman1,2 to study the (dis)ability to generate motion from an equilibrium situation, ratchets operate out of equilibrium, where the second law of thermodynamics no longer applies. Although ratchet systems have been both identified in nature3,4 and used in the laboratory for the directed motion of microscopic objects5,6,7,8,9, electronic ratchets10,11,12,13 have been of limited use, as they typically operate at cryogenic temperatures and generate subnanoampere currents and submillivolt voltages10,11,12,13,14. Here, we present organic electronic ratchets that operate up to radio frequencies at room temperature and generate currents and voltages that are orders of magnitude larger. This enables their use as a d.c. power source. We integrated the ratchets into logic circuits, in which they act as the d.c. equivalent of the a.c. transformer, and generate enough power to drive the circuitry. Our findings show that electronic ratchets may be of actual use.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ratchet mechanism and proof of principle.
Figure 2: Ratchet-generated current in a multidimensional parameter space.
Figure 3: A ratchet as a power source.
Figure 4: Ratchet-powered logic circuit.

Change history

  • 17 December 2010

    In the version of this Letter originally published online, the y-axis of Figure 3b should have read 'Output power (µW)' instead of 'Output power (mW)'. This error has now been corrected in the HTML and PDF versions of the text.


  1. Smoluchowski, M. V. Experimentell nachweisbare, der Ublichen Thermodynamik widersprechende Molekularphenomene. Phys. Z. 13, 1069–1080 (1912).

    Google Scholar 

  2. Feynman, R. P., Sands, M. L. & Leighton, R. B. The Feynman Lectures on Physics (Addison-Wesley, 1989).

    Google Scholar 

  3. Prakash, M., Quere, D. & Bush, J. W. M. Surface tension transport of prey by feeding shorebirds: The capillary ratchet. Science 320, 931–934 (2008).

    CAS  Article  Google Scholar 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    CAS  Article  Google Scholar 

  5. van Oudenaarden, A. & Boxer, S. G. Brownian ratchets: Molecular separations in lipid bilayers supported on patterned arrays. Science 285, 1046–1048 (1999).

    CAS  Article  Google Scholar 

  6. Linke, H. et al. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006).

    CAS  Article  Google Scholar 

  7. Mahmud, G. et al. Directing cell motions on micropatterned ratchets. Nature Phys. 5, 606–612 (2009).

    CAS  Article  Google Scholar 

  8. Rousselet, J., Salome, L., Ajdari, A. & Prost, J. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994).

    CAS  Article  Google Scholar 

  9. Bader, J. S. et al. DNA transport by a micromachined Brownian ratchet device. Proc. Natl Acad. Sci. USA 96, 13165–13169 (1999).

    CAS  Article  Google Scholar 

  10. Linke, H. et al. Experimental tunnelling ratchets. Science 286, 2314–2317 (1999).

    CAS  Article  Google Scholar 

  11. Linke, H. et al. Asymmetric nonlinear conductance of quantum dots with broken inversion symmetry. Phys. Rev. B 61, 15914–15926 (2000).

    CAS  Article  Google Scholar 

  12. Khrapai, V. S., Ludwig, S., Kotthaus, J. P., Tranitz, H. P. & Wegscheider, W. Double-dot quantum ratchet driven by an independently biased quantum point contact. Phys. Rev. Lett. 97, 176803 (2006).

    CAS  Article  Google Scholar 

  13. Majer, J. B., Peguiron, J., Grifoni, M., Tusveld, M. & Mooij, J. E. Quantum ratchet effect for vortices. Phys. Rev. Lett. 90, 056802 (2003).

    CAS  Article  Google Scholar 

  14. Song, A. M. et al. Room-temperature and 50 GHz operation of a functional nanomaterial. Appl. Phys. Lett. 79, 1357–1359 (2001).

    CAS  Article  Google Scholar 

  15. For a review see: Hanggi, P. & Marchesoni, F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  Google Scholar 

  16. For a review see: Reimann, P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep.-Rev. Sec. Phys. Lett. 361, 57–265 (2002).

    CAS  Google Scholar 

  17. Linke, H. Ratchets and Brownian motors: Basics, experiments and applications. Appl. Phys. A 75, 167–167 (2002).

    CAS  Article  Google Scholar 

  18. Eshuis, P., van der Weele, K., Lohse, D. & van der Meer, D. Experimental realization of a rotational ratchet in a granular gas. Phys. Rev. Lett. 104, 248001 (2010).

    Article  Google Scholar 

  19. Loutherback, K., Puchalla, J., Austin, R. H. & Sturm, J. C. Deterministic microfluidic ratchet. Phys. Rev. Lett. 102, 045301 (2009).

    Article  Google Scholar 

  20. Sassine, S. et al. Experimental investigation of the ratchet effect in a two-dimensional electron system with broken spatial inversion symmetry. Phys. Rev. B 78, 045431 (2008).

    Article  Google Scholar 

  21. Silva, C. C. D., de Vondel, J. V., Morelle, M. & Moshchalkov, V. V. Controlled multiple reversals of a ratchet effect. Nature 440, 651–654 (2006).

    Article  Google Scholar 

  22. Cantatore, E. & Meijer, E. J. ESSCIRC. Proc. 29th Eur. Solid State Ciruits Conf. 29–36 (2003).

    Google Scholar 

  23. Knipp, D., Kumar, P., Volkel, A. R. & Street, R. A. Influence of organic gate dielectrics on the performance of pentacene thin film transistors. Synth. Met. 155, 485–489 (2005).

    CAS  Article  Google Scholar 

  24. Wu, Y. L., Li, Y. N. & Ong, B. S. Printed silver ohmic contacts for high-mobility organic thin-film transistors. J. Am. Chem. Soc. 128, 4202–4203 (2006).

    CAS  Article  Google Scholar 

Download references


We thank Dago M. de Leeuw and Simon G. J. Mathijssen for comments and discussions. This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs (VIDI grant 07575).

Author information

Authors and Affiliations



E.M.R., W.C.G. and M.K. designed the experiments. E.M.R. carried out the experiments. E.M.R., W.C.G., R.A.J.J. and M.K. analysed the data. E.M.R. and M.K. made the simulation model and conducted the simulations. E.M.R., W.C.G., R.A.J.J. and M.K. wrote the manuscript. E.M.R., W.C.G., B.S., E.J.G. and T.d.V. fabricated the samples. R.A.J.J. and M.K. supervised the project.

Corresponding author

Correspondence to Martijn Kemerink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2547 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roeling, E., Germs, W., Smalbrugge, B. et al. Organic electronic ratchets doing work. Nature Mater 10, 51–55 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing