The role of prenucleation clusters in surface-induced calcium phosphate crystallization

Abstract

Unravelling the processes of calcium phosphate formation1,2,3,4 is important in our understanding of both bone and tooth formation5,6,7, and also of pathological mineralization, for example in cardiovascular disease8,9,10. Serum is a metastable solution from which calcium phosphate precipitates in the presence of calcifiable templates such as collagen, elastin and cell debris11,12. A pathological deficiency of inhibitors leads to the uncontrolled deposition of calcium phosphate. In bone and teeth the formation of apatite crystals is preceded by an amorphous calcium phosphate (ACP) precursor phase13,14. ACP formation is thought to proceed through prenucleation clusters—stable clusters that are present in solution already before nucleation—as was recently demonstrated for CaCO3 (refs 1516). However, the role of such nanometre-sized clusters as building blocks2 for ACP has been debated for many years. Here we demonstrate that the surface-induced formation of apatite from simulated body fluid17,18 starts with the aggregation of prenucleation clusters leading to the nucleation of ACP before the development of oriented apatite crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stable prenuclation clusters in SBF.
Figure 2: CryoTEM imaging of different stages of the mineralization process.
Figure 3: Schematic representation of the different stages of surface-directed mineralization of calcium phosphate from SBF at 37 °C.

References

  1. 1

    Brecevic, L. J. & Furedi-Milhofer, H. Precipitation of calcium phosphates from electrolyte solutions. II. The formation and transformation of precipitates. Calcif. Tissue Res. 10, 82–90 (1972).

    CAS  Article  Google Scholar 

  2. 2

    Posner, A. S. & Betts, F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res. 8, 273–281 (1975).

    CAS  Article  Google Scholar 

  3. 3

    Onuma, K. & Ito, A. Cluster growth model for hydroxyapatite. Chem. Mater. 10, 3346–3351 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Müller, F. A., Müller, L., Caillard, D. & Conforto, E. Preferred growth orientation of biomimetic apatite crystals. J. Cryst. Growth 304, 464–471 (2007).

    Article  Google Scholar 

  5. 5

    Brown, W. E. & Chow, L. C. Chemical properties of bone mineral. Annu. Rev. Mater. Sci. 6, 213–236 (1976).

    CAS  Article  Google Scholar 

  6. 6

    Smith, C. E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral Biol. Med. 9, 128–161 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Olszta, M. J. et al. Bone structure and formation: A new perspective. Mater. Sci. Eng. R 58, 77–116 (2007).

    Article  Google Scholar 

  8. 8

    Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Hui, M., Li, S. Q., Holmyard, D. & Cheng, P. T. Stable transfection of nonosteogenic cell lines with tissue nonspecific alkaline phosphatase enhances mineral deposition both in the presence and absence of β-glycerophosphate: Possible role for alkaline phosphatase in pathological mineralisation. Calcif. Tissue Int. 60, 467–472 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Dorozhkin, S. V. & Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130–3146 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Urry, D. W. Molecular basis for vascular calcification. Perspect. Biol. Med. 17, 68–84 (1974).

    CAS  Article  Google Scholar 

  12. 12

    Westenfeld, R. et al. Fetuin-A protects against atherosclerotic calcification in CKD. J. Am. Soc. Nephrol. 20, 1264–1274 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Beniash, E., Metzler, R. A., Lam, R. S. K. & Gilbert, P. U. P. A. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol. 166, 133–143 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Mahamid, J. et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl Acad. Sci. USA 107, 6316–6321 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Gebauer, D., Volkel, A. & Colfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Pouget, E. M. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Ayako, O. et al. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 65A, 188–195 (2003).

    Article  Google Scholar 

  18. 18

    Muller, L. & Muller, F. A. Preparation of SBF with different HCO3 content and its influence on the composition of biomimetic apatites. Acta Biomater. 2, 181–189 (2006).

    Article  Google Scholar 

  19. 19

    Rey, C., Combes, C., Drouet, C. & Glimcher, M. Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 20, 1013–1021 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Wang, L. & Nancollas, G. H. Pathways to biomineralization and biodemineralization of calcium phosphates: The thermodynamic and kinetic controls. Dalton Trans. 2665–2672 (2009).

  22. 22

    Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Pichon, B. P., Bomans, P. H. H., Frederik, P. M. & Sommerdijk, N. A. J. M. A quasi-time-resolved cryoTEM study of the nucleation of CaCO3 under Langmuir monolayers. J. Am. Chem. Soc. 130, 4034–4040 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Legeros, R. Z., Trautz, O. R., Legeros, J. P., Klein, E. & Shirra, W. P. Apatite crystallites: Effects of carbonate on morphology. Science 155, 1409–1411 (1967).

    CAS  Article  Google Scholar 

  25. 25

    Ivanova, T. I., Frank-Kamenetskaya, O. V., Kol’tsov, A. B. & Ugolkov, V. L. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J. Solid State Chem. 160, 340–349 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Sato, K., Kogure, T., Kumagai, Y. & Tanaka, J. Crystal orientation of hydroxyapatite induced by ordered carboxylic groups. J. Colloid Interface Sci. 240, 133–138 (2001).

    CAS  Article  Google Scholar 

  27. 27

    DiMasi, E., Olszta, M. J., Patel, V. M. & Gower, L. B. When is template directed mineralization really template directed? Cryst. Eng. Comm. 5, 346–350 (2003).

    Article  Google Scholar 

  28. 28

    Xilin, Y. & Malcolm, J. S. Biological calcium phosphates and Posner’s cluster. J. Chem. Phys. 118, 3717–3723 (2003).

    Article  Google Scholar 

  29. 29

    Termine, J. D. & Posner, A. S. Calcium phosphate formation in vitro: I. Factors affecting initial phase separation. Arch. Biochem. Biophys. 140, 307–317 (1970).

    CAS  Article  Google Scholar 

  30. 30

    Nudelman, F. et al. Collagen can directly control the formation of bone apatite in the presence of a calcium-ion binding polymer in solution. Nature Mater. published online doi:10.1038/NMAT2875 (24 October 2010).

  31. 31

    Tsuji, T., Onuma, K., Yamamoto, A., Iijima, M. & Shiba, K. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins. Proc. Natl Acad. Sci. USA 105, 16866–16870 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Crane, N. J., Popescu, V., Morris, M. D., Steenhuis, P. & Ignelzi, J. M. A. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39, 434–442 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Bohner, M. & Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 30, 2175–2179 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Mitchell, D. R. G. DiffTools: Electron diffraction software tools for digitalmicrograph. Microsc. Res. Tech. 71, 588–593 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Supported by the European Community (project code NMP4-CT-2006-033277) and the Netherlands Organization for Scientific Research (NWO). We are grateful to F. Nudelman for discussions and experimental assistance. We thank E. M. Pouget for her help in experimental design, F. L. Boogaard and J. J. van Roosmalen for their contribution to the three-dimensional reconstructions of the tomograms, M.M.R.M. Hendrix for his help with X-ray diffraction and P. T. K. Chin for providing the CdSe nanorods.

Author information

Affiliations

Authors

Contributions

A.D. carried out all experiments and cowrote the manuscript. P.H.H.B. and P.M.F. provided support with the cryoTEM. F.A.M. and J.W. provided SBF. G.W. and N.A.J.M.S. supervised the project and N.A.J.M.S. cowrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Nico A. J. M. Sommerdijk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. S1-S8, Table S1-Table S2

Supplementary Information (PDF 1352 kb)

Supplementary Information

Supplementary Information Movie 1 (MOV 3474 kb)

Supplementary Information

Supplementary Information Movie 2 (MOV 3803 kb)

Supplementary Information

Supplementary Information Movie 3 (MOV 3053 kb)

Supplementary Information

Supplementary Information Movie 4 (MOV 3292 kb)

Supplementary Information

Supplementary Information Movie 5 (MOV 2580 kb)

Supplementary Information

Supplementary Information Movie 6 (MOV 3204 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dey, A., Bomans, P., Müller, F. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Mater 9, 1010–1014 (2010). https://doi.org/10.1038/nmat2900

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing